已知函数f(x)=sin(2x-3/π)+2 求函数f(x)的最小正周期和最大值 函数f(x)的单调递增区间
展开全部
1.w=2 T=2π/W=2π/2=π
2.当2x-π/3=π/2+2kπ,即 x=5π/12+kπ时,f(x)取最大值,f(x)(MAX)=1+2=3
3.将2x-π/3代入到标准正弦函数sinx的单调增区间中去解出x即
由 -π/2+2kπ≤2x-π/3≤π/2+2kπ得:-π/12+kπ≤x≤5π/12+kπ
所以原函数的单调增区间为:【-π/12+kπ,5π/12+kπ】(注如果w>0,直接代入单调增区间中去求解,反之就代入到相反单调区间中去求解)
2.当2x-π/3=π/2+2kπ,即 x=5π/12+kπ时,f(x)取最大值,f(x)(MAX)=1+2=3
3.将2x-π/3代入到标准正弦函数sinx的单调增区间中去解出x即
由 -π/2+2kπ≤2x-π/3≤π/2+2kπ得:-π/12+kπ≤x≤5π/12+kπ
所以原函数的单调增区间为:【-π/12+kπ,5π/12+kπ】(注如果w>0,直接代入单调增区间中去求解,反之就代入到相反单调区间中去求解)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.w=2 T=2π/|w|=2π/2=π
2.当2x-π/3=π/2+2kπ,即 x=5π/12+kπ时,f(x)取最大值,f(x)(MAX)=1+2=3
3.设2x-π/3=Z,因为sinZ单调增区间是【-π/2+2kπ,π/2+2kπ】
所以 -π/2+2kπ≤2x-π/3≤π/2+2kπ 解得:-π/12+kπ≤x≤5π/12+kπ
所以原函数的单调增区间为:【-π/12+kπ,5π/12+kπ】
2.当2x-π/3=π/2+2kπ,即 x=5π/12+kπ时,f(x)取最大值,f(x)(MAX)=1+2=3
3.设2x-π/3=Z,因为sinZ单调增区间是【-π/2+2kπ,π/2+2kπ】
所以 -π/2+2kπ≤2x-π/3≤π/2+2kπ 解得:-π/12+kπ≤x≤5π/12+kπ
所以原函数的单调增区间为:【-π/12+kπ,5π/12+kπ】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询