一道数学题目,关于向量和三角函数
已知向量a=(sin(wx+φ),2),b=(1,cos(wx+φ))(w>0,0<φ<π/4),函数f(x)=(a+b)·(a-b)【a,b均为向量】,y=f(x)的图...
已知向量a=(sin(wx+φ),2),b=(1,cos(wx+φ))(w>0,0<φ<π/4),函数f(x)=(a+b)·(a-b)【a,b均为向量】,y=f(x)的图像的相邻两对称轴之间的距离为2,且过点M(1,7/2)
1.求函数f(x)
2.若α∈(5π/6,4π/3),f(2α/π)=10/3,求sin(2α+4π/3)的值
3.求f(0)+f(1)+f(3)+……+f(2011)的值 展开
1.求函数f(x)
2.若α∈(5π/6,4π/3),f(2α/π)=10/3,求sin(2α+4π/3)的值
3.求f(0)+f(1)+f(3)+……+f(2011)的值 展开
4个回答
展开全部
f(x)=(a+b)*(a-b)=|a|²-|b|²=[sin²(wx+φ)+4]-[1+cos²(wx+φ)]=3-[cos²(wx+φ)-sin²(wx+φ)]=3-cos(2wx+2φ)
由于f(x)相邻两对称轴之间的距离是2,则T/2=2即:T=4
T=2π/|2w|=4,得:w=π/4
则:f(x)=3-cos[(π/2)x+φ],因f(x)过点(1,7/2),则:
3-cos[(π/2)+φ]=7/2
cos(π/2+φ)=-1/2
-sinφ=-1/2
sinφ=1/2
φ=π/6
则:
f(x)=3-cos[(π/2)x+π/6]
f(2a/π)=3-cos(a+π/6)=10/3,得:cos(a+π/6)=-1/3,因为a∈(5π/6,4π/3),则:
a+π/6∈(π,3π/2),则sin(a+π/6)=-2√2/3
sin(2a+4π/3)=-sin(2a+π/3)=-2sin(a+π/6)cos(a+π/6)=-4√2/9
函数f(x)的周期是T=4,f(0)=3-cos(π/6),f(1)=3-cos(π/2+π/6),f(3)=3-cos(3π/2+π/6),f(5)=3-cos(5π/2+π/6)=f(1),……,得:
f(1)=f(5)=f(9)=f(13)=……=-1/2
f(3)=f(7)=f(11)=f(15)=…=1/2
则:S=f(0)=√3/2
由于f(x)相邻两对称轴之间的距离是2,则T/2=2即:T=4
T=2π/|2w|=4,得:w=π/4
则:f(x)=3-cos[(π/2)x+φ],因f(x)过点(1,7/2),则:
3-cos[(π/2)+φ]=7/2
cos(π/2+φ)=-1/2
-sinφ=-1/2
sinφ=1/2
φ=π/6
则:
f(x)=3-cos[(π/2)x+π/6]
f(2a/π)=3-cos(a+π/6)=10/3,得:cos(a+π/6)=-1/3,因为a∈(5π/6,4π/3),则:
a+π/6∈(π,3π/2),则sin(a+π/6)=-2√2/3
sin(2a+4π/3)=-sin(2a+π/3)=-2sin(a+π/6)cos(a+π/6)=-4√2/9
函数f(x)的周期是T=4,f(0)=3-cos(π/6),f(1)=3-cos(π/2+π/6),f(3)=3-cos(3π/2+π/6),f(5)=3-cos(5π/2+π/6)=f(1),……,得:
f(1)=f(5)=f(9)=f(13)=……=-1/2
f(3)=f(7)=f(11)=f(15)=…=1/2
则:S=f(0)=√3/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)由y=f(x)的图像的相邻两对称轴之间的距离为2,知:T=4。
0<φ<π/4),且过点M(1,7/2)。
f(x)=sin^2(wx+φ)-cos^2(wx+φ)+3=- cos2*(wx+φ) +3 = - cos(π/2 *x+π/6)+3.
(2) 2α+π/3∈(2π,3π)
cos(2α+π/3)=2*cos)^2(α+π/6 )-1= -7/9.
sin(2α+4π/3)= - sin(2α+π/3)=- (4/3) *2^(1/2).
(3)
有规律可循,写出几项就可找出。
0<φ<π/4),且过点M(1,7/2)。
f(x)=sin^2(wx+φ)-cos^2(wx+φ)+3=- cos2*(wx+φ) +3 = - cos(π/2 *x+π/6)+3.
(2) 2α+π/3∈(2π,3π)
cos(2α+π/3)=2*cos)^2(α+π/6 )-1= -7/9.
sin(2α+4π/3)= - sin(2α+π/3)=- (4/3) *2^(1/2).
(3)
有规律可循,写出几项就可找出。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:1.f(x)=(a+b)·(a-b)=a^2-b^2=sin(wx+φ)^2+4-cos(wx+φ)^2-1=3-cos(2wx+2φ)
T/2=2,2π/(2w)=4,w=π/4 -1/2=cos(π/2+2φ),φ=φ/12
f(x)=3-cos(π/2x+π/6)
2.cos(π/2*(2α/π)+π/6)=-1/3,sin(2α+4π/3)=-sin(2α+π/3)=-2sin(α+π/6)cos(α+π/6)
π<α+π/6<(π3)/2,sin(α+π/6)=-(1-1/9)^1/2=-(2*2^(1/2))/3
sin(2α+4π/3)=-(4*2^(1/2))/9
3. f(i)+f(i+1)+f(i+3 )+f(i+4 )=0,2012/4=503,
f(0)+f(1)+f(3)+……+f(2011)=503×3=1509
T/2=2,2π/(2w)=4,w=π/4 -1/2=cos(π/2+2φ),φ=φ/12
f(x)=3-cos(π/2x+π/6)
2.cos(π/2*(2α/π)+π/6)=-1/3,sin(2α+4π/3)=-sin(2α+π/3)=-2sin(α+π/6)cos(α+π/6)
π<α+π/6<(π3)/2,sin(α+π/6)=-(1-1/9)^1/2=-(2*2^(1/2))/3
sin(2α+4π/3)=-(4*2^(1/2))/9
3. f(i)+f(i+1)+f(i+3 )+f(i+4 )=0,2012/4=503,
f(0)+f(1)+f(3)+……+f(2011)=503×3=1509
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询