已知sinθ,cosθ是关于x的方程x^2-ax+a=0(a∈R)的两个根,求cos(π/2-θ)^3+sin(π/2-θ)^3的值,
展开全部
sinθ+cosθ=a (1)
sinθcosθ=a (2)
(1)两边平方:
1+2sinθc0sθ=a^2
2sinθc0sθ=a^2-1 (3)
(3)/(2):2=a-1/a
a1=1+√2(舍去), a2=1-√蠢纤2
cos³(π/2-θ)+sin³(π/2-θ)
=sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=a(1-a)
=a-a²=1-√带岁仿2-(1-√雀伍2)²=√2-3
(1)/(2):tanθ+1/tanθ=1
tan(π-θ)-1/tanθ=-tanθ-1/tanθ
=-(tanθ+1/tanθ)=-1
sinθcosθ=a (2)
(1)两边平方:
1+2sinθc0sθ=a^2
2sinθc0sθ=a^2-1 (3)
(3)/(2):2=a-1/a
a1=1+√2(舍去), a2=1-√蠢纤2
cos³(π/2-θ)+sin³(π/2-θ)
=sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=a(1-a)
=a-a²=1-√带岁仿2-(1-√雀伍2)²=√2-3
(1)/(2):tanθ+1/tanθ=1
tan(π-θ)-1/tanθ=-tanθ-1/tanθ
=-(tanθ+1/tanθ)=-1
展开全部
sinθ+cosθ=a (1)
sinθcosθ=a (2)
(1)两边平方:
1+2sinθc0sθ=a^2
2sinθc0sθ=a^2-1 (3)
(3)/(2):2=a-1/a
a1=1+√2(舍去), a2=1-√蠢纤2
cos³(π/2-θ)+sin³(π/2-θ)
=sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=a(1-a)
=a-a²=1-√带岁仿2-(1-√雀伍2)²=√2-3
(1)/(2):tanθ+1/tanθ=1
tan(π-θ)-1/tanθ=-tanθ-1/tanθ
=-(tanθ+1/tanθ)=-1
sinθcosθ=a (2)
(1)两边平方:
1+2sinθc0sθ=a^2
2sinθc0sθ=a^2-1 (3)
(3)/(2):2=a-1/a
a1=1+√2(舍去), a2=1-√蠢纤2
cos³(π/2-θ)+sin³(π/2-θ)
=sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=a(1-a)
=a-a²=1-√带岁仿2-(1-√雀伍2)²=√2-3
(1)/(2):tanθ+1/tanθ=1
tan(π-θ)-1/tanθ=-tanθ-1/tanθ
=-(tanθ+1/tanθ)=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询