高等数学,第11题 求详解!
2个回答
展开全部
(11)
x=ln(1+t^2)
dx/dt = 2t/(1+t^2)
y=t-arcsint
dy/dt = 1- 1/√(1-t^2)
dy/dx
= dy/dt / dx/dt
=[1- 1/√(1-t^2)]/[2t/(1+t^2)]
=[ (1-t^2)-√(1-t^2)]/(2t)
= 1/(2t) - (1/2)t - √(1-t^2)]/(2t)
d/dt (dy/dx)
=-1/(2t^2) -(1/2) - [-t^2/√(1-t^2) -√(1-t^2) ] /(2t^2)
=-1/(2t^2) -(1/2) + 1/[2t^2.√(1-t^2)]
d^2y/dx^2
=d/dt (dy/dx) / dx/dt
={-1/(2t^2) -(1/2) + 1/[2t^2.√(1-t^2)]} /[2t/(1+t^2)]
x=ln(1+t^2)
dx/dt = 2t/(1+t^2)
y=t-arcsint
dy/dt = 1- 1/√(1-t^2)
dy/dx
= dy/dt / dx/dt
=[1- 1/√(1-t^2)]/[2t/(1+t^2)]
=[ (1-t^2)-√(1-t^2)]/(2t)
= 1/(2t) - (1/2)t - √(1-t^2)]/(2t)
d/dt (dy/dx)
=-1/(2t^2) -(1/2) - [-t^2/√(1-t^2) -√(1-t^2) ] /(2t^2)
=-1/(2t^2) -(1/2) + 1/[2t^2.√(1-t^2)]
d^2y/dx^2
=d/dt (dy/dx) / dx/dt
={-1/(2t^2) -(1/2) + 1/[2t^2.√(1-t^2)]} /[2t/(1+t^2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询