如何求二阶导数?
二阶偏导数公式是:∂z/∂x=[√(x²+y²)-x·2x/2√胡并(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]。
∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]。
∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]。
∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]。
1、当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么含做缺称函数f(x,y)在域D可导。
2、求二阶偏导数的方法:当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。
3、二阶导数的相关规定性质:设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;若在(a,b)内f''(x)<0,则f(x)在[a,b]上的图形是凸的。
4、结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,谈辩为极大值点;当一阶导数和二阶导数都等于0时,为驻点。