设随机变量的x的概率密度为f(x)=Ae-|x|,求:(1)常数A;(2)X落在区间(0,1)内的概率;(3)P(X2<1)。

考试资料网
2023-04-23 · 百度认证:赞题库官方账号
考试资料网
向TA提问
展开全部
【答案】:解:
(1)
f(x)=ae^(x) ,x≤0 ;
f(x)=ae^(-x),x>0
由概率密度函数的性质得
∫ae^xdx(积分区间为负无穷到0)=1/2
得a=1/2
(2)
F(x)=(1/2) (e^x),x≤0
F(x)=1-(1/2)e^(-x),x>0
代入P{0≤x≤1}=F(1)-F(0)=(1/2)(1-1/e)
或者P{0≤x≤1}=1/2∫e^(-x)dx 积分区间为0到1
(3)
F(x)=(1/2) (e^x),x≤0
F(x)=1-(1/2)e^(-x),x>0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式