设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1,n∈N﹡,且a1,a2+5,a3成等差数列。
2个回答
展开全部
2Sn=an+1-2n+1此式,
令n=1,n=2得两个方程
再加上a1,a2+5,a3成等差数列
得第三个方程
含a1,a2,a3三个未知数 a1=7/3 a2=17/3 a3=19
2Sn=an+1-2n+1 2S(n+1)=3a(n+1)-2n+1 2s(n+2)=3a(n+2)-2n-1
2a(n+2)=3a(n+2)-3a(n+1)-2 a(n+2)=3a(n+1)+2
a1=7/3 a2=17/3 a3=19 a4=59..........
a(n+2)=3a(n+1)+2
令n=1,n=2得两个方程
再加上a1,a2+5,a3成等差数列
得第三个方程
含a1,a2,a3三个未知数 a1=7/3 a2=17/3 a3=19
2Sn=an+1-2n+1 2S(n+1)=3a(n+1)-2n+1 2s(n+2)=3a(n+2)-2n-1
2a(n+2)=3a(n+2)-3a(n+1)-2 a(n+2)=3a(n+1)+2
a1=7/3 a2=17/3 a3=19 a4=59..........
a(n+2)=3a(n+1)+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询