人教版六年级下册数学《比例的基本性质》教学设计
展开全部
教材分析
《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。
学情分析
学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。
教学目标
1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
2、培养学生的抽象概括能力。
3、渗透转化的数学思想。
教学重点和难点
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:掌握化简比的方法。
教学过程
教学过程
活动一
1、出示例1,出示例1,让学生解答。
2、教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)
①根据分数、比、除法的关系验证。
②根据比值验证。
......
③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?
活动二
1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)
2、根据你自己的理解,能说一说什么是最简单的整数比吗?
(前项和后项是互质数。)
3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。
让学生试做后,总结方法。
4、出示例1(2)①1/6:2/9②0.75:2
学生先讨论方法,再试做。
5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。
6、化简比与求比值有什么不同?
7、质疑
活动三
1、做一做46页化简比。
2、48页第4题
教学反思
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。
“兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。
《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。
学情分析
学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。
教学目标
1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
2、培养学生的抽象概括能力。
3、渗透转化的数学思想。
教学重点和难点
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:掌握化简比的方法。
教学过程
教学过程
活动一
1、出示例1,出示例1,让学生解答。
2、教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)
①根据分数、比、除法的关系验证。
②根据比值验证。
......
③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?
活动二
1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)
2、根据你自己的理解,能说一说什么是最简单的整数比吗?
(前项和后项是互质数。)
3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。
让学生试做后,总结方法。
4、出示例1(2)①1/6:2/9②0.75:2
学生先讨论方法,再试做。
5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。
6、化简比与求比值有什么不同?
7、质疑
活动三
1、做一做46页化简比。
2、48页第4题
教学反思
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。
“兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询