设X服从0-1分布,X1,X2....XN是来自X的一个样本,试求参数P的极大似然估计值

求具体过程~万分感谢!... 求具体过程~万分感谢! 展开
zssasa1991
2012-06-09 · TA获得超过4274个赞
知道大有可为答主
回答量:1258
采纳率:66%
帮助的人:746万
展开全部
P(X=1)=p P(X=0)=1-p
所以X的密度函数是P(X=a)=p^a*(1-p)^(1-a) a=0或1
p未知,p∈[0,1]
样本为X1……XN
所以似然函数是L(x1,x2……xn;p)=(p^x1*(1-p)^(1-x1))*(p^x2*(1-p)^(1-x2))……(p^xn*(1-p)^(1-xn))
=p^(∑xi)*(1-p)^(n-∑xi)
取对数ln L=∑xi ln p +(n-∑xi ) ln(1-p)
求导:dlnL/dp=∑xi/p -(n-∑xi)/(1-p)=0
lnL在p=(∑xi)/n时取得最大值
所以p的最大似然估计是(∑xi)/n
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式