求以下积分
∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n}积分区间(0,π)n∈N+...
∫x(sinx)^2n/{(sinx)^2n+(cosx)^2n} 积分区间(0,π) n∈N+
展开
1个回答
展开全部
首先用一个公式:∫[0→π] xf(sinx) dx = (π/2)∫[0→π] f(sinx) dx
∫[0→π] x(sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx+(π/2)∫[π/2→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
对后一项换元,令x=u+π/2,u:0→π/2
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (sin(u+π/2))^2n/[(sin(u+π/2))^2n+(cos(u+π/2))^2n] du
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosu)^2n/[(sinu)^2n+(cosu)^2n] du
将u写成x
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] 1 dx
=π²/4
∫[0→π] x(sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx+(π/2)∫[π/2→π] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
对后一项换元,令x=u+π/2,u:0→π/2
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (sin(u+π/2))^2n/[(sin(u+π/2))^2n+(cos(u+π/2))^2n] du
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosu)^2n/[(sinu)^2n+(cosu)^2n] du
将u写成x
=(π/2)∫[0→π/2] (sinx)^2n/[(sinx)^2n+(cosx)^2n] dx
+(π/2)∫[0→π/2] (cosx)^2n/[(sinx)^2n+(cosx)^2n] dx
=(π/2)∫[0→π/2] 1 dx
=π²/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询