已知函数f(x)=(1/2)x^2+mlnx (1)当m=-1时,求f(x)的单调区间;
(2)彐x0>0,使得f(x0)<=0成立,求实数m的取值范围;(3)设1<m<=e,F(x)=f(x)-(m+1)x,对∀x1,x2属于[1,m],不等式F...
(2)彐x0>0,使得f(x0)<=0成立,求实数m的取值范围;
(3)设1<m<=e,F(x)=f(x)-(m+1)x,对∀x1,x2属于[1,m],不等式F(x1)-F(x2)<1是否恒成立?请说明理由。 展开
(3)设1<m<=e,F(x)=f(x)-(m+1)x,对∀x1,x2属于[1,m],不等式F(x1)-F(x2)<1是否恒成立?请说明理由。 展开
展开全部
已知函数f(x)=(1/2)x^2+mlnx
(1)当m=-1时,求f(x)的单调区间;
(2)彐x0>0,使得f(x0)<=0成立,求实数m的取值范围;
(3)设1<m<=e,F(x)=f(x)-(m+1)x,对∀x1,x2属于[1,m],不等式F(x1)-F(x2)<1是否恒成立?请说明理由。
(1)解析:∵函数f(x)=1/2x^2+mlnx, 其定义域为x>0
令m=-1,则f(x)=1/2x^2-lnx
令f’(x)=x-1/x=0==>x1=-1(舍),x2=1
f’’(x)=1+1/x^2
f’’(1)=2>0,∴函数f(x)在x=1处取极小值;
∴当x∈(0,1)时,函数f(x)单调减;当x∈[,+∞)时,函数f(x)单调增;
(2)解析:大衫∵函数f(x)=1/2x^2+mlnx
当m=0时,f(x)=1/2x^2,∴x=0时,f(x)=0
∴存在x0>0,使得f(x0)<=0不成滚携腔立
当m≠0时,令f’(x)=x+m/x=0==>x=√(-m)
m>0时,f’(x)>0,函数f(x)在定义域内单调增
∵当x→0(+)(从正方向趋近零)时,f(x)→-∞, 当x→+∞时,f(x)→+∞
∴存在x0>0,使得f(x0)<=0成立
M<0时,f’’(x)=1-m/x^2, f’’(√(-m))=2>0, ∴函数f(x)在x=√(-m)处取极小值;
令f(√(-m))=-1/2m+m/2ln(-m)<=0==>m<=-e
∴当m<=-e时,存在x0>0,使得f(x0)<=0成立
综上,当m<=-e或m>0时,存在x0>0,使得f(x0)<=0成立
(3)解析:设1<m<=e,F(x)= 1/2x^2+mlnx-(m+1)x
F’(x)=x+m/x-(m+1)=0==>x1=1,x2=m
F’’(x)=1-m/x^2
F’’(m)=1-1/m>0,∴F(x)在x=m处取极小值F(m)=mlnm-1/2m^2-m
F’’(1)=1-m<0,∴F(x)在x=1处取极大值F(1)=-1/2-m
∵x∈[1,m],∴函数F(x)单调减
令g(m)=F(1)-F(m)=1/2m^2-1/2-mlnm
G’(m)=m-lnm-1==> 令G’’(m)=1-1/m=0==>m=1==> G’’’(m)=1/m^2>0
∴导函数G’(m)在m=1处取极小值G’(1)=0
即1<m<=e时隐贺,G’(m)>0,函数g(m)单调增;
g(1)=0,g(e)=1/2e^2-1/2-e≈0.47624652<1
∴对任何x1,x2属于[1,m],不等式F(x1)-F(x2)<1恒成立
(1)当m=-1时,求f(x)的单调区间;
(2)彐x0>0,使得f(x0)<=0成立,求实数m的取值范围;
(3)设1<m<=e,F(x)=f(x)-(m+1)x,对∀x1,x2属于[1,m],不等式F(x1)-F(x2)<1是否恒成立?请说明理由。
(1)解析:∵函数f(x)=1/2x^2+mlnx, 其定义域为x>0
令m=-1,则f(x)=1/2x^2-lnx
令f’(x)=x-1/x=0==>x1=-1(舍),x2=1
f’’(x)=1+1/x^2
f’’(1)=2>0,∴函数f(x)在x=1处取极小值;
∴当x∈(0,1)时,函数f(x)单调减;当x∈[,+∞)时,函数f(x)单调增;
(2)解析:大衫∵函数f(x)=1/2x^2+mlnx
当m=0时,f(x)=1/2x^2,∴x=0时,f(x)=0
∴存在x0>0,使得f(x0)<=0不成滚携腔立
当m≠0时,令f’(x)=x+m/x=0==>x=√(-m)
m>0时,f’(x)>0,函数f(x)在定义域内单调增
∵当x→0(+)(从正方向趋近零)时,f(x)→-∞, 当x→+∞时,f(x)→+∞
∴存在x0>0,使得f(x0)<=0成立
M<0时,f’’(x)=1-m/x^2, f’’(√(-m))=2>0, ∴函数f(x)在x=√(-m)处取极小值;
令f(√(-m))=-1/2m+m/2ln(-m)<=0==>m<=-e
∴当m<=-e时,存在x0>0,使得f(x0)<=0成立
综上,当m<=-e或m>0时,存在x0>0,使得f(x0)<=0成立
(3)解析:设1<m<=e,F(x)= 1/2x^2+mlnx-(m+1)x
F’(x)=x+m/x-(m+1)=0==>x1=1,x2=m
F’’(x)=1-m/x^2
F’’(m)=1-1/m>0,∴F(x)在x=m处取极小值F(m)=mlnm-1/2m^2-m
F’’(1)=1-m<0,∴F(x)在x=1处取极大值F(1)=-1/2-m
∵x∈[1,m],∴函数F(x)单调减
令g(m)=F(1)-F(m)=1/2m^2-1/2-mlnm
G’(m)=m-lnm-1==> 令G’’(m)=1-1/m=0==>m=1==> G’’’(m)=1/m^2>0
∴导函数G’(m)在m=1处取极小值G’(1)=0
即1<m<=e时隐贺,G’(m)>0,函数g(m)单调增;
g(1)=0,g(e)=1/2e^2-1/2-e≈0.47624652<1
∴对任何x1,x2属于[1,m],不等式F(x1)-F(x2)<1恒成立
展开全部
1 f'=x-1/x=0, x=1, f'>0 when x>1, so f increases on (1, positive infinity) ; f'<0 when 0<x<1, so f decreases on (0,1)
2 f'=x+m/x=(x^2+m)/x, if m>唤裂拍0, f'>0, f increases from minus infinity, that is ok.
It is easily to see that m cannot be 0;
if m<0, then x=sqrt (-m) is the minimum point, to satisfy the conclusion, we only need that
f(min) <=0, i.e.,
f(sqrt (-m))=-m/2+mln(sqrt (-m))= m/2(ln(-m)-1)<=0, so (ln(-m)-1)>源掘=0, ln(-m)>=1, m<=-e.
in sum, m<=-e or m>0
3 F=(1/2)x^2+mlnx-(m+1)x, F'=(x^2+m)/x-(m+1)=0.
x=m is the minimum point, x=1 is the maximum point.
But F(1)=-m-1/2, F(m)=-m^2/2+mlnm-m, F(1)-F(m)=m^2/2-mlnm-1/2=g(m).
g'(m)=m-lnm-1, g''(m)=1-1/m>0, so g'和羡 increases. g'(1)=0, so g'>0, so g(m) increases.
g(1)=0, g(e) =e^2/2-e-1/2<1, so 0<g(m)<1. so that F(1)-F(m)=g(m)<=g(e)<1.
So for any x1, x2 in [1,m], F(x1)-F(x2)<F(1)-F(m)<1.
2 f'=x+m/x=(x^2+m)/x, if m>唤裂拍0, f'>0, f increases from minus infinity, that is ok.
It is easily to see that m cannot be 0;
if m<0, then x=sqrt (-m) is the minimum point, to satisfy the conclusion, we only need that
f(min) <=0, i.e.,
f(sqrt (-m))=-m/2+mln(sqrt (-m))= m/2(ln(-m)-1)<=0, so (ln(-m)-1)>源掘=0, ln(-m)>=1, m<=-e.
in sum, m<=-e or m>0
3 F=(1/2)x^2+mlnx-(m+1)x, F'=(x^2+m)/x-(m+1)=0.
x=m is the minimum point, x=1 is the maximum point.
But F(1)=-m-1/2, F(m)=-m^2/2+mlnm-m, F(1)-F(m)=m^2/2-mlnm-1/2=g(m).
g'(m)=m-lnm-1, g''(m)=1-1/m>0, so g'和羡 increases. g'(1)=0, so g'>0, so g(m) increases.
g(1)=0, g(e) =e^2/2-e-1/2<1, so 0<g(m)<1. so that F(1)-F(m)=g(m)<=g(e)<1.
So for any x1, x2 in [1,m], F(x1)-F(x2)<F(1)-F(m)<1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询