急求!!pascal n皇后问题 (递归) 带详细解析
2.n皇后问题【问题描述】在n×n的国际象棋盘上,放置n个皇后,使任何一个皇后都不能吃掉另一个,需满足的条件是:同一行、同一列、同一对角线上只能有一个皇后。求所有满足要求...
2. n皇后问题
【问题描述】
在n×n的国际象棋盘上,放置n个皇后,使任何一个皇后都不能吃掉另一个,需满足的条件是:同一行、同一列、同一对角线上只能有一个皇后。求所有满足要求的放置方案。
【输入】
一个正整数n,表示皇后的个数。
【输出】
每行代表一种放置方案:第i行的第一个数是i,表示第i种方案,后面一个冒号,然后是用空格隔开的n个数,其中第i个数x[i]表示第i行上的皇后放在第x[i]列;最后一行:一个整数,表示方案总数。 展开
【问题描述】
在n×n的国际象棋盘上,放置n个皇后,使任何一个皇后都不能吃掉另一个,需满足的条件是:同一行、同一列、同一对角线上只能有一个皇后。求所有满足要求的放置方案。
【输入】
一个正整数n,表示皇后的个数。
【输出】
每行代表一种放置方案:第i行的第一个数是i,表示第i种方案,后面一个冒号,然后是用空格隔开的n个数,其中第i个数x[i]表示第i行上的皇后放在第x[i]列;最后一行:一个整数,表示方案总数。 展开
4个回答
展开全部
〖问题描述〗
在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相"冲"(在每一横列竖列斜列只有一个皇后)。
〖问题分析〗(聿怀中学吕思博)
这道题可以用递归循环来做,分别一一测试每一种摆法,直到得出正确的答案。主要解决以下几个问题:
1、冲突。包括行、列、两条对角线:
(1)列:规定每一列放一个皇后,不会造成列上的冲突;
(2)行:当第I行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以I为下标的标记置为被占领状态;
(3)对角线:对角线有两个方向。在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。因此,当第I个皇后占领了第J列后,要同时把以(i+j)、(i-j)为下标的标记置为被占领状态。
2、数据结构。
(1)解数组A。A[I]表示第I个皇后放置的列;范围:1..8
(2)行冲突标记数组B。B[I]=0表示第I行空闲;B[I]=1表示第I行被占领;范围:1..8
(3)对角线冲突标记数组C、D。
C[I-J]=0表示第(I-J)条对角线空闲;C[I-J]=1表示第(I-J)条对角线被占领;范围:-7..7
D[I+J]=0表示第(I+J)条对角线空闲;D[I+J]=1表示第(I+J)条对角线被占领;范围:2..16
〖算法流程〗
1、数据初始化。
2、从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):
如果是,摆放第n个皇后,并宣布占领(记得要横列竖列斜列一起来哦),接着进行递归;
如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。
3、当n>;8时,便一一打印出结果。
〖优点〗逐一测试标准答案,不会有漏网之鱼。
〖参考程序〗queen.pas
----------------------------------------------------------------------------
programtt;
vara:array[1..8]ofinteger;
b,c,d:array[-7..16]ofinteger;
t,i,j,k:integer;
procedureprint;
begin
t:=t+1;
write(t,'');
fork:=1to8dowrite(a[k],'');
writeln;
end;
proceduretry(i:integer);
varj:integer;
begin
forj:=1to8do
if(b[j]=0)and(c[i+j]=0)and(d[i-j]=0)then
begin
a:=j;
b[j]:=1;
c[i+j]:=1;
d[i-j]:=1;
ifi<8thentry(i+1)
elseprint;
b[j]:=0;
c[i+j]:=0;
d[i-j]:=0;
end;
end;
begin
fork:=-7to16do
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end;
try(1);
end.
==========================================
这是N皇后问题,看看吧:
在N*N的棋盘上,放置N个皇后,要求每一横行每一列,每一对角线上均只能放置一个皇后,问可能的方案及方案数。
const max=8;
var i,j:integer;
a:array[1..max] of 0..max; //放皇后数组
b:array[2..2*max] of boolean; // ‘/’对角线标志数组}
c:array[-(max-1)..max-1] of boolean;// ‘\’对角线标志数组}
col:array[1..max] of boolean; //列标志数组}
total:integer; //统计总数}
procedure output; //这里是输出过程
var i:integer;
begin
write('No.':4,'[',total+1:2,']');
for i:=1 to max do write(a[i]:3);write(' ');
if (total+1) mod 2 =0 then writeln; inc(total);
end;
function ok(i,dep:integer):boolean; //判断第dep行第i列可放否?
begin
ok:=false;
if ( b[i+dep]=true) and ( c[dep-i]=true) and
(col[i]=true) then ok:=true
end;
procedure try(dep:integer);
var i,j:integer;
begin
for i:=1 to max do //每一行均有max种放法,对吧?xixi~~~~
if ok(i,dep) then begin
a[dep]:=i;
b[i+dep]:=false; // ‘/’对角线已放标志
c[dep-i]:=false; // ‘\’对角线已放标志
col[i]:=false; // 列已放标志
if dep=max then output
else try(dep+1); // 递归下一层
a[dep]:=0; //取走皇后,回溯
b[i+dep]:=true; //恢复标志数组
c[dep-i]:=true;
col[i]:=true;
end;
end;
begin
for i:=1 to max do begin a[i]:=0;col[i]:=true;end;
for i:=2 to 2*max do b[i]:=true;
for i:=-(max-1) to max-1 do c[i]:=true;
total:=0;
try(1);
writeln('total:',total);
end.
方案一(深度优先搜索):
var ans:array[1..8] of integer; //记录答案的数组,记录在第1到第8行皇后所在的列;
lie:array[1..8] of boolean; //记录1到8中某列是否已经被另一个皇后占用;
zx:array[2..16] of boolean; //正斜线(左下向右上)数组,该斜线特点为:斜线上每一格的行加列的和一定,和为从2到16. 9士捎?到16来表示这15条正斜线,于是该数组记录了2到16中某条正斜线是否已经被另一个皇后占用;
fx:array[-7..7] of boolean; //反斜线(左上向右下)数组,该斜线特点为:斜线上每一格的行减列的差一定,差为从-7到7 9士捎?7到7来表示这15条正斜线,于是该数组记录了2到16中某条正斜线是否已经被另一个皇后占用;
temp:integer; //记录总方案数;
procedure print; //该子程序负责输出方案;
var i:integer;
begin
write('zuobiao');
for i:=1 to 8 do
write(' (',i,',',ans[i],')'); //i代表行,ans[i]代表列;
writeln;
end;
procedure search(i:integer); //i为行,即表示放到了第几个皇后(因为一行有且只有1个皇后);
var j:integer;
begin
if i=9 then //递归出口,当搜索到第九行时,便得到一种方案;
begin
print; //输出该方案;
inc(temp); //每输出(得到)一种方案,总方案数变加1;
exit; //退出;
end;
for j:=1 to 8 do if not lie[j] and not zx[i+j] and not fx[i-j] then //当前位置,该列,正斜线,反斜线上均未被另一个皇后占用,即可以摆放一个皇后;
begin
lie[j]:=true; //设置标志,该行
zx[i+j]:=true; // 该正斜线
fx[i-j]:=true; // 该反斜线上已被皇后占用,不可再放皇后;
ans[i]:=j; //记录答案(第i行皇后所在列j);
search(i+1); //实行下一层递归;
lie[j]:=false; //恢复标志(回溯);
zx[i+j]:=false;
fx[i-j]:=false;
end;
end;
begin //主程序;
temp:=0; //给总方案数设初值为0;
fillchar(lie,sizeof(lie),0); //分别给列;
fillchar(zx,sizeof(zx),0); // 正斜线;
fillchar(fx,sizeof(fx),0); // 反斜线数组设初值为False;
search(1); //从第一行开始进行搜索;
writeln(temp); //再输出总方案数;
end.
方案二(位运算加速):
var
upperlim,sum:integer;
procedure test(row,ld,rd:integer);
var
pos,p:integer;
begin
if row<>upperlim then
begin
pos:=upperlim and not (row or ld or rd);
while pos<>0 do
begin
p:=pos and -pos;
pos:=pos-p;
test(row+p,(ld+p)shl 1,(rd+p)shr 1);
end;
end
else
inc(sum);
end;
begin
upperlim:=(1 shl 8)-1;
test(0,0,0);
writeln(sum);
end.
设置一个三维数组,第一个下标是皇后的行坐标,第二个下标是皇后的列坐标,第三个下标是残卷号。相当于有N张叠在一起的8*8棋盘,每张棋盘只在复制前面棋盘及皇后后加放置一个皇后。直到放满8皇后后才是一张完整的8皇后图,称完卷。
在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相"冲"(在每一横列竖列斜列只有一个皇后)。
〖问题分析〗(聿怀中学吕思博)
这道题可以用递归循环来做,分别一一测试每一种摆法,直到得出正确的答案。主要解决以下几个问题:
1、冲突。包括行、列、两条对角线:
(1)列:规定每一列放一个皇后,不会造成列上的冲突;
(2)行:当第I行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以I为下标的标记置为被占领状态;
(3)对角线:对角线有两个方向。在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。因此,当第I个皇后占领了第J列后,要同时把以(i+j)、(i-j)为下标的标记置为被占领状态。
2、数据结构。
(1)解数组A。A[I]表示第I个皇后放置的列;范围:1..8
(2)行冲突标记数组B。B[I]=0表示第I行空闲;B[I]=1表示第I行被占领;范围:1..8
(3)对角线冲突标记数组C、D。
C[I-J]=0表示第(I-J)条对角线空闲;C[I-J]=1表示第(I-J)条对角线被占领;范围:-7..7
D[I+J]=0表示第(I+J)条对角线空闲;D[I+J]=1表示第(I+J)条对角线被占领;范围:2..16
〖算法流程〗
1、数据初始化。
2、从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):
如果是,摆放第n个皇后,并宣布占领(记得要横列竖列斜列一起来哦),接着进行递归;
如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。
3、当n>;8时,便一一打印出结果。
〖优点〗逐一测试标准答案,不会有漏网之鱼。
〖参考程序〗queen.pas
----------------------------------------------------------------------------
programtt;
vara:array[1..8]ofinteger;
b,c,d:array[-7..16]ofinteger;
t,i,j,k:integer;
procedureprint;
begin
t:=t+1;
write(t,'');
fork:=1to8dowrite(a[k],'');
writeln;
end;
proceduretry(i:integer);
varj:integer;
begin
forj:=1to8do
if(b[j]=0)and(c[i+j]=0)and(d[i-j]=0)then
begin
a:=j;
b[j]:=1;
c[i+j]:=1;
d[i-j]:=1;
ifi<8thentry(i+1)
elseprint;
b[j]:=0;
c[i+j]:=0;
d[i-j]:=0;
end;
end;
begin
fork:=-7to16do
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end;
try(1);
end.
==========================================
这是N皇后问题,看看吧:
在N*N的棋盘上,放置N个皇后,要求每一横行每一列,每一对角线上均只能放置一个皇后,问可能的方案及方案数。
const max=8;
var i,j:integer;
a:array[1..max] of 0..max; //放皇后数组
b:array[2..2*max] of boolean; // ‘/’对角线标志数组}
c:array[-(max-1)..max-1] of boolean;// ‘\’对角线标志数组}
col:array[1..max] of boolean; //列标志数组}
total:integer; //统计总数}
procedure output; //这里是输出过程
var i:integer;
begin
write('No.':4,'[',total+1:2,']');
for i:=1 to max do write(a[i]:3);write(' ');
if (total+1) mod 2 =0 then writeln; inc(total);
end;
function ok(i,dep:integer):boolean; //判断第dep行第i列可放否?
begin
ok:=false;
if ( b[i+dep]=true) and ( c[dep-i]=true) and
(col[i]=true) then ok:=true
end;
procedure try(dep:integer);
var i,j:integer;
begin
for i:=1 to max do //每一行均有max种放法,对吧?xixi~~~~
if ok(i,dep) then begin
a[dep]:=i;
b[i+dep]:=false; // ‘/’对角线已放标志
c[dep-i]:=false; // ‘\’对角线已放标志
col[i]:=false; // 列已放标志
if dep=max then output
else try(dep+1); // 递归下一层
a[dep]:=0; //取走皇后,回溯
b[i+dep]:=true; //恢复标志数组
c[dep-i]:=true;
col[i]:=true;
end;
end;
begin
for i:=1 to max do begin a[i]:=0;col[i]:=true;end;
for i:=2 to 2*max do b[i]:=true;
for i:=-(max-1) to max-1 do c[i]:=true;
total:=0;
try(1);
writeln('total:',total);
end.
方案一(深度优先搜索):
var ans:array[1..8] of integer; //记录答案的数组,记录在第1到第8行皇后所在的列;
lie:array[1..8] of boolean; //记录1到8中某列是否已经被另一个皇后占用;
zx:array[2..16] of boolean; //正斜线(左下向右上)数组,该斜线特点为:斜线上每一格的行加列的和一定,和为从2到16. 9士捎?到16来表示这15条正斜线,于是该数组记录了2到16中某条正斜线是否已经被另一个皇后占用;
fx:array[-7..7] of boolean; //反斜线(左上向右下)数组,该斜线特点为:斜线上每一格的行减列的差一定,差为从-7到7 9士捎?7到7来表示这15条正斜线,于是该数组记录了2到16中某条正斜线是否已经被另一个皇后占用;
temp:integer; //记录总方案数;
procedure print; //该子程序负责输出方案;
var i:integer;
begin
write('zuobiao');
for i:=1 to 8 do
write(' (',i,',',ans[i],')'); //i代表行,ans[i]代表列;
writeln;
end;
procedure search(i:integer); //i为行,即表示放到了第几个皇后(因为一行有且只有1个皇后);
var j:integer;
begin
if i=9 then //递归出口,当搜索到第九行时,便得到一种方案;
begin
print; //输出该方案;
inc(temp); //每输出(得到)一种方案,总方案数变加1;
exit; //退出;
end;
for j:=1 to 8 do if not lie[j] and not zx[i+j] and not fx[i-j] then //当前位置,该列,正斜线,反斜线上均未被另一个皇后占用,即可以摆放一个皇后;
begin
lie[j]:=true; //设置标志,该行
zx[i+j]:=true; // 该正斜线
fx[i-j]:=true; // 该反斜线上已被皇后占用,不可再放皇后;
ans[i]:=j; //记录答案(第i行皇后所在列j);
search(i+1); //实行下一层递归;
lie[j]:=false; //恢复标志(回溯);
zx[i+j]:=false;
fx[i-j]:=false;
end;
end;
begin //主程序;
temp:=0; //给总方案数设初值为0;
fillchar(lie,sizeof(lie),0); //分别给列;
fillchar(zx,sizeof(zx),0); // 正斜线;
fillchar(fx,sizeof(fx),0); // 反斜线数组设初值为False;
search(1); //从第一行开始进行搜索;
writeln(temp); //再输出总方案数;
end.
方案二(位运算加速):
var
upperlim,sum:integer;
procedure test(row,ld,rd:integer);
var
pos,p:integer;
begin
if row<>upperlim then
begin
pos:=upperlim and not (row or ld or rd);
while pos<>0 do
begin
p:=pos and -pos;
pos:=pos-p;
test(row+p,(ld+p)shl 1,(rd+p)shr 1);
end;
end
else
inc(sum);
end;
begin
upperlim:=(1 shl 8)-1;
test(0,0,0);
writeln(sum);
end.
设置一个三维数组,第一个下标是皇后的行坐标,第二个下标是皇后的列坐标,第三个下标是残卷号。相当于有N张叠在一起的8*8棋盘,每张棋盘只在复制前面棋盘及皇后后加放置一个皇后。直到放满8皇后后才是一张完整的8皇后图,称完卷。
展开全部
program queen;
const maxn=100;
type arr=array[1..maxn]of integer;
var a:arr;
t,n:longint;
function pd(i,j:longint):boolean;
var k:longint;
begin
pd:=true;
for k:=1 to i-1 do
if (i+j=a[k]+k)or(i-j=k-a[k])or(a[k]=j) then begin pd:=false;break; end;
end;
procedure queen1(i:longint);
var j:longint;
begin
if i>n then inc(t)
else for j:=1 to n do
if pd(i,j) then
begin
a[i]:=j;
queen1(i+1);
end
end;
begin
readln(n);
t:=0;
queen1(1);
writeln(t);
end.
const maxn=100;
type arr=array[1..maxn]of integer;
var a:arr;
t,n:longint;
function pd(i,j:longint):boolean;
var k:longint;
begin
pd:=true;
for k:=1 to i-1 do
if (i+j=a[k]+k)or(i-j=k-a[k])or(a[k]=j) then begin pd:=false;break; end;
end;
procedure queen1(i:longint);
var j:longint;
begin
if i>n then inc(t)
else for j:=1 to n do
if pd(i,j) then
begin
a[i]:=j;
queen1(i+1);
end
end;
begin
readln(n);
t:=0;
queen1(1);
writeln(t);
end.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
var i,j:integer;
max:longint;
a:array[1..10] of 0..10; {放皇后数组}
b:array[2..2*10] of boolean; {/对角线标志数组}
c:array[-(10-1)..10-1] of boolean; {\对角线标志数组}
col:array[1..10] of boolean; {列标志数组}
total:integer; {统计总数}
procedure output; {输出}
var i:integer;
begin
write('No.':4,'[',total+1:2,']');
for i:=1 to max do write(a[i]:3);write(' ');
if (total+1) mod 2 =0 then writeln; inc(total);
end;
function ok(i,dep:integer):boolean; {判断第dep行第i列可放否}
begin
ok:=false;
if ( b[i+dep]=true) and ( c[dep-i]=true) {and (a[dep]=0)} and
(col[i]=true) then ok:=true
end;
procedure try(dep:integer);
var i,j:integer;
begin
for i:=1 to max do {每一行均有max种放法}
if ok(i,dep) then begin
a[dep]:=i;
b[i+dep]:=false; {/对角线已放标志}
c[dep-i]:=false; {\对角线已放标志}
col[i]:=false; {列已放标志}
if dep=max then output
else try(dep+1); {递归下一层}
a[dep]:=0; {取走皇后,回溯}
b[i+dep]:=true; {恢复标志数组}
c[dep-i]:=true;
col[i]:=true;
end;
end;
begin
readln(max);
for i:=1 to max do begin a[i]:=0;col[i]:=true;end;
for i:=2 to 2*max do b[i]:=true;
for i:=-(max-1) to max-1 do c[i]:=true;
total:=0;
try(1);
writeln('total:',total);
end.
max:longint;
a:array[1..10] of 0..10; {放皇后数组}
b:array[2..2*10] of boolean; {/对角线标志数组}
c:array[-(10-1)..10-1] of boolean; {\对角线标志数组}
col:array[1..10] of boolean; {列标志数组}
total:integer; {统计总数}
procedure output; {输出}
var i:integer;
begin
write('No.':4,'[',total+1:2,']');
for i:=1 to max do write(a[i]:3);write(' ');
if (total+1) mod 2 =0 then writeln; inc(total);
end;
function ok(i,dep:integer):boolean; {判断第dep行第i列可放否}
begin
ok:=false;
if ( b[i+dep]=true) and ( c[dep-i]=true) {and (a[dep]=0)} and
(col[i]=true) then ok:=true
end;
procedure try(dep:integer);
var i,j:integer;
begin
for i:=1 to max do {每一行均有max种放法}
if ok(i,dep) then begin
a[dep]:=i;
b[i+dep]:=false; {/对角线已放标志}
c[dep-i]:=false; {\对角线已放标志}
col[i]:=false; {列已放标志}
if dep=max then output
else try(dep+1); {递归下一层}
a[dep]:=0; {取走皇后,回溯}
b[i+dep]:=true; {恢复标志数组}
c[dep-i]:=true;
col[i]:=true;
end;
end;
begin
readln(max);
for i:=1 to max do begin a[i]:=0;col[i]:=true;end;
for i:=2 to 2*max do b[i]:=true;
for i:=-(max-1) to max-1 do c[i]:=true;
total:=0;
try(1);
writeln('total:',total);
end.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在一个8×8的棋盘里放置8个皇后而彼此不受攻击(即在棋盘的每一横列、竖列、斜列上不能放置个皇后)。编程求解所有的摆放方法。(下图所示是八皇后问题的两个解)
分析:由于皇后的摆放位置不能通过某种公式来确定,因此对于每个皇后的摆放位置都要进行试探和纠正,这就是“回溯”的思想。在8个皇后未放置完成前,摆放第i个皇后和第i+1个皇后的试探方法是相同的,因此完全可以采用递归的方法来处理。
主要解决以下几个问题:
1. 冲突
包括行、列、两条对角线。
(1) 行:规定每一行放一个皇后,不会造成行上的冲突;
(2) 列:当第j列被某个皇后占领后,则同一列上的所有空格都不能再放皇后,要把以j为下标的标记置为被占领状态;
(3) 对角线:对角线有两个方向。在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。因此,可以把对角线标记为这个常数。当第i个皇后占领了第j列后,要同时把以(i+j)、(i-j)为下标的对角线标记置为被占领状态。
2.数据结构
(1)解数组a。
a[i]表示第i个皇后放置的行,范围:1..8。
(2)列冲突标记数组b。
b[j]=0表示第j列空闲,b[j]=1表示第j列被占领,范围:1..8
(3)对角线冲突标记数组c,d.
c[i-j]=0表示第(i-j)条对角线空闲,c[i-j]=1表示第(i-j)条对角线被占领,范围:-7..7。
d[i+j]=0表示第(i+j)条对角线空闲,d[i+j]=1表示第(i+j)条对角线被占领,范围:2..16。
3.算法流程
(1)数据初始化.
(2)从n行开始摆放第n个皇后(因为这样便 可以符合每一横行一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):
如果是,摆放第n个皇后,并宣布占领,接着进行递归;
如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯.
(4) 当n>8时,便一一打印出结果。
参考程序:
Program ex9_7;
Var
A:array[1..8] of integer;{解数组}
b,c,d:array[-7..16]of integer;{三个标记数组}
t,k:integer;
procedure print;
var k:integer;
begin
t:=t+1;{总解数加1}
for k:=1 to 8 do write(a[k]),’ ‘);输出一组解
writeln;
end;
procedure try(integer);
var j:integer;
begin
for j:=1 to 8 do {每个皇后都有8种可能位置}
if (b[j]=0) and (c[i-j]=0) and (d[i+j]=0) then {判断位置是否冲突}
begin
a[i]:=j;{摆放第i个皇后于第j列}
b[j]:=1;{宣布占领第j列}
c[i-j]:=1;{宣布占领两个对角线}
d{i+j}:=1;
if i<8 then try(i+1){8个皇后没有摆完,递归摆放下一皇后}
else print; {完成任务,则打印结果}
b[j];=0;{回溯}
c[i-j]:=0;
d[i+j]:=0;
end;
end;
begin
for k:=-7 to 16 do {数据初始化}
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end
try(1);{从第1个皇后开始放置}
end.
分析:由于皇后的摆放位置不能通过某种公式来确定,因此对于每个皇后的摆放位置都要进行试探和纠正,这就是“回溯”的思想。在8个皇后未放置完成前,摆放第i个皇后和第i+1个皇后的试探方法是相同的,因此完全可以采用递归的方法来处理。
主要解决以下几个问题:
1. 冲突
包括行、列、两条对角线。
(1) 行:规定每一行放一个皇后,不会造成行上的冲突;
(2) 列:当第j列被某个皇后占领后,则同一列上的所有空格都不能再放皇后,要把以j为下标的标记置为被占领状态;
(3) 对角线:对角线有两个方向。在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。因此,可以把对角线标记为这个常数。当第i个皇后占领了第j列后,要同时把以(i+j)、(i-j)为下标的对角线标记置为被占领状态。
2.数据结构
(1)解数组a。
a[i]表示第i个皇后放置的行,范围:1..8。
(2)列冲突标记数组b。
b[j]=0表示第j列空闲,b[j]=1表示第j列被占领,范围:1..8
(3)对角线冲突标记数组c,d.
c[i-j]=0表示第(i-j)条对角线空闲,c[i-j]=1表示第(i-j)条对角线被占领,范围:-7..7。
d[i+j]=0表示第(i+j)条对角线空闲,d[i+j]=1表示第(i+j)条对角线被占领,范围:2..16。
3.算法流程
(1)数据初始化.
(2)从n行开始摆放第n个皇后(因为这样便 可以符合每一横行一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):
如果是,摆放第n个皇后,并宣布占领,接着进行递归;
如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯.
(4) 当n>8时,便一一打印出结果。
参考程序:
Program ex9_7;
Var
A:array[1..8] of integer;{解数组}
b,c,d:array[-7..16]of integer;{三个标记数组}
t,k:integer;
procedure print;
var k:integer;
begin
t:=t+1;{总解数加1}
for k:=1 to 8 do write(a[k]),’ ‘);输出一组解
writeln;
end;
procedure try(integer);
var j:integer;
begin
for j:=1 to 8 do {每个皇后都有8种可能位置}
if (b[j]=0) and (c[i-j]=0) and (d[i+j]=0) then {判断位置是否冲突}
begin
a[i]:=j;{摆放第i个皇后于第j列}
b[j]:=1;{宣布占领第j列}
c[i-j]:=1;{宣布占领两个对角线}
d{i+j}:=1;
if i<8 then try(i+1){8个皇后没有摆完,递归摆放下一皇后}
else print; {完成任务,则打印结果}
b[j];=0;{回溯}
c[i-j]:=0;
d[i+j]:=0;
end;
end;
begin
for k:=-7 to 16 do {数据初始化}
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end
try(1);{从第1个皇后开始放置}
end.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询