
如何设特征方程和特征根?
1个回答
展开全部
二阶常系数非齐次线性微分方程特解如下:
二阶常系数非齐次线性微分方程的表达式为y+py+qy=f(x),其特解y*设法分为两种。
1、如果f(x)=P(x),Pn(x)为n阶多项式。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
特解y*设法:
1、如果f(x)=P(x),Pn(x)为n阶多项式。
若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。
二阶常系数非齐次线性微分方程的表达式为y+py+qy=f(x),其特解y*设法分为两种。
1、如果f(x)=P(x),Pn(x)为n阶多项式。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
特解y*设法:
1、如果f(x)=P(x),Pn(x)为n阶多项式。
若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。

2025-09-16 广告
联韬企业管理咨询有限公司是专注在供应链管理和运营管理领域的培训咨询机构,承办CPIM/CSCP/CLTD/SCOR DS认证项目的教育培训及考试管理,为企业和个人提供教育培训,专业认证考试和咨询指导服务。帮助企业实施和改进管理流程;提高管理...
点击进入详情页
本回答由上海联韬企业提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询