1个回答
展开全部
1/a(n+1)=1/(an^2+an)=1/an-1/(an+1)
1/(an+1)= 1/an-1/a(n+1)
1/(a1+1)+1/(a2+1)+...+1/(a2011+1)=(1/a1-1/a2)+(1/a2-1/a3)+...+(1/a2011-1/a2012)
=1/a1 - 1/a2012=2-1/a2012
因为a(n+1)=an^2 +an
所以a(n+1) -an=an^2 >0
所以{an}是递增数列,
而a2=3/4 a3=21/16
当n>3时,an>a3=21/16
所以0<1/an<1/a3=16/21<1
0<1/a2012<1
1<2-1/a2012<2
因些选B
1/(an+1)= 1/an-1/a(n+1)
1/(a1+1)+1/(a2+1)+...+1/(a2011+1)=(1/a1-1/a2)+(1/a2-1/a3)+...+(1/a2011-1/a2012)
=1/a1 - 1/a2012=2-1/a2012
因为a(n+1)=an^2 +an
所以a(n+1) -an=an^2 >0
所以{an}是递增数列,
而a2=3/4 a3=21/16
当n>3时,an>a3=21/16
所以0<1/an<1/a3=16/21<1
0<1/a2012<1
1<2-1/a2012<2
因些选B
追问
想请教一下,1/(a1+1)+1/(a2+1)+...+1/(a2011+1)=(1/a1-1/a2)+(1/a2-1/a3)+...+(1/a2011-1/a2012)
=1/a1 - 1/a2012=2-1/a2012
这一步是怎么得出来的?为什么1/(an+1)=1/an-1/a(n+1)?我就是化不出这一步。有劳指教!
追答
裂项相消法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询