已知函数f(x)=ax+b/x+c(a、b、c∈R),满足f(-1)=0,且对于任意x>0,都有0≤f(x)-1≤(x-1)^2/2x。
(1)求a、b、c的值(2)若g(x)=f(x)-m/4x,x∈(0,2)时是减函数,求实数m的取值范围...
(1)求a、b、c的值
(2)若g(x)=f(x)-m/4x,x∈(0,2)时是减函数,求实数m的取值范围 展开
(2)若g(x)=f(x)-m/4x,x∈(0,2)时是减函数,求实数m的取值范围 展开
展开全部
1)
∵f(-1)=0∴c=a+b,f(1)=a+b+c=2c
∵0≤f(x)-1≤(x-1)²/2x
∴0≤f(1)-1≤0,f(1)-1=0,
∴c=1/2,2a=1-2b
由x>0,f(x)-1≤(x-1)^2/2x,得
ax+b/x+c-1≤(x²-2x+1)/2x,2ax²+2b-x≤x²-2x+1,(1-2a)x²-x+1-2b≥0,2bx²-x+1-2b≥0
∵2bx²-x+1-2b≥0对x>0恒成立,
∴b>0,由函数g(x)=2bx²-x+1-2b的对称轴x=1/(4b)>0
∴g(1/4b)≥0,即g(1/4b)=1/(8b)-1/(4b)+1-2b=(16b²-8b+1)/(-8b)=-(4b-1)²/(8b)≥0
∴4b-1=0,即b=1/4
∵a+b=c,∴a=1/4
综上,a=b=1/4,c=1/2
2)
g(x)=x/4+(1-m)/(4x)+1/2
g′(x)=1/4-(1-m)/(4x²)=(x²-1+m)/(4x²)
∵g(x)在x∈(0,2)时是减函数
∴g′(x)≤0对x∈(0,2)恒成立
由(x²-1+m)/(4x²)≤0得,x²≤1-m
∴1-m≥2²
故 m≤-3
∵f(-1)=0∴c=a+b,f(1)=a+b+c=2c
∵0≤f(x)-1≤(x-1)²/2x
∴0≤f(1)-1≤0,f(1)-1=0,
∴c=1/2,2a=1-2b
由x>0,f(x)-1≤(x-1)^2/2x,得
ax+b/x+c-1≤(x²-2x+1)/2x,2ax²+2b-x≤x²-2x+1,(1-2a)x²-x+1-2b≥0,2bx²-x+1-2b≥0
∵2bx²-x+1-2b≥0对x>0恒成立,
∴b>0,由函数g(x)=2bx²-x+1-2b的对称轴x=1/(4b)>0
∴g(1/4b)≥0,即g(1/4b)=1/(8b)-1/(4b)+1-2b=(16b²-8b+1)/(-8b)=-(4b-1)²/(8b)≥0
∴4b-1=0,即b=1/4
∵a+b=c,∴a=1/4
综上,a=b=1/4,c=1/2
2)
g(x)=x/4+(1-m)/(4x)+1/2
g′(x)=1/4-(1-m)/(4x²)=(x²-1+m)/(4x²)
∵g(x)在x∈(0,2)时是减函数
∴g′(x)≤0对x∈(0,2)恒成立
由(x²-1+m)/(4x²)≤0得,x²≤1-m
∴1-m≥2²
故 m≤-3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询