如何求等比数列和等差数列?
等比数列公式:
1、定义式:
2、求和公式:
4、从等比数列的定义、通项公式、前n项和公式可以推出:
等差数列公式:
1、定义式
对于数列若满足:
则称该数列为等差数列。其中,公差d为一常数,n为正整数。
2、通项公式
an=a1+(n-1)*d。首项a1=1,公差d=2。
3、前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n²+(a1-d/2)*n
扩展资料:
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。
众所周知,按揭贷款(公积金贷款)中一般实行按月等额还本付息。下面就来寻求这一问题的解决办法。
若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元,设第 n 月还款后的本金为 an。
那么有:a1=a0(1+p)-a;a2=a1(1+p)-a;a3=a2(1+p)-a;......an+1=an(1+p)-a,.... 将其变形,得(an+1-a/p)/(an-a/p)=1+p。
由此可见,{an-a/p} 是一个以 a1-a/p 为首项,1+p 为公比的等比数列。
其实类似的还有零存整取、整存整取等银行储蓄借贷,甚至还可以延伸到生物界的细胞细胞分裂。
参考资料来源:百度百科-等比数列