要怎么证明这几个公式
1个回答
展开全部
(1)
a(n+1) - a(1) = nd
a(n+2) - a(2) = nd
...
a(n+i) - a(i) = nd
S(2n)-S(n) = n^2 d
余者同理.....
(2)
S(2n) = a1 + a(2) + ... + a(n) + a(n+1) + a(n+2) + ... + a(2n)
S(2n) = a(2n) + a(2n-1) + ... + a(n+1) + a(n) + a(n-1) + ... + a(1)
2S(2n) = 2n ( a1 + a(2n) ) = 2n(a(n) + a(n+1))
S(2n) = n(a(n)+a(n+1))
a(2)-a(1) = d
a(4)-a(3) = d
....
a(2n) - a(2n-1) = d
S偶 - S奇 = nd
S奇 = n[a(1) + a(2n-1)]
S偶 = n[a(2) + a(2n)]
S奇/S偶 = (a(1)+a(2n-1))/(a(2)+a(2n)) = a(n)/a(n+1)
S(2n-1) = S(2n) - a(2n) = n a(n) + n a(n+1) - a(2n) = 2n a(n) + nd - a(2n)
= (2n-1) a(n)
S奇 - S偶 = a(2n) - [S(2n)偶 - S(2n)奇] = a(2n) - nd = a(n)
S奇/S偶 = (a(1)+a(2n-1))/(a(2)+a(2n-2)) = na(n)/[(n-1)a(n)] = n/(n-1)
a(n+1) - a(1) = nd
a(n+2) - a(2) = nd
...
a(n+i) - a(i) = nd
S(2n)-S(n) = n^2 d
余者同理.....
(2)
S(2n) = a1 + a(2) + ... + a(n) + a(n+1) + a(n+2) + ... + a(2n)
S(2n) = a(2n) + a(2n-1) + ... + a(n+1) + a(n) + a(n-1) + ... + a(1)
2S(2n) = 2n ( a1 + a(2n) ) = 2n(a(n) + a(n+1))
S(2n) = n(a(n)+a(n+1))
a(2)-a(1) = d
a(4)-a(3) = d
....
a(2n) - a(2n-1) = d
S偶 - S奇 = nd
S奇 = n[a(1) + a(2n-1)]
S偶 = n[a(2) + a(2n)]
S奇/S偶 = (a(1)+a(2n-1))/(a(2)+a(2n)) = a(n)/a(n+1)
S(2n-1) = S(2n) - a(2n) = n a(n) + n a(n+1) - a(2n) = 2n a(n) + nd - a(2n)
= (2n-1) a(n)
S奇 - S偶 = a(2n) - [S(2n)偶 - S(2n)奇] = a(2n) - nd = a(n)
S奇/S偶 = (a(1)+a(2n-1))/(a(2)+a(2n-2)) = na(n)/[(n-1)a(n)] = n/(n-1)
TableDI
2024-07-18 广告
2024-07-18 广告
Excel表格中的计数函数主要用于统计单元格区域中满足特定条件的数值或非空单元格的数量。最常用的计数函数是`COUNT`和`COUNTA`。`COUNT`函数用于统计选定区域内数值型单元格的数量,忽略文本和空单元格。而`COUNTA`函数则...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询