高数容易 第四题
展开全部
解:
分析,本题只涉及到单个点的可导性,只能用定义求解!
令y=φ(x),于是:
F'[φ(x)]|x=0
=F'(y)|x=0
=lim(x→0) [F(y)-F(0)]/(x-0)
=lim(x→0) {[F(y)-F(0)]/(y-0)}· [(y-0)/(x-0)]
上式中:
lim(x→0) y
=lim(x→0) x²sin(1/x)
显然:-x²≤x²sin(1/x)≤x²
而:
lim(x→0) -x²=0
lim(x→0) x²=0
由夹逼准则:
lim(x→0) x²sin(1/x) =0=φ(0)
因此,在x=0处,y=φ(x)连续
∴
lim(x→0) [F(y)-F(0)]/(y-0)
=lim(y→0) [F(y)-F(0)]/(y-0)
=F'(0)
而:
φ'(0)
=lim(x→0) (y-0)/(x-0)
=lim(x→0) y/x
=lim(x→0) φ(x)/x
=lim(x→0) xsin(1/x)
=0
∴
F'[φ(x)]|x=0
=lim(x→0) {[F(y)-F(0)]/(y-0)}· [(y-0)/(x-0)]
=lim(y→0) [F(y)-F(0)]/(y-0)} · lim(x→0) (y-0)/(x-0)
=F'(0)·φ'(0)
=0
分析,本题只涉及到单个点的可导性,只能用定义求解!
令y=φ(x),于是:
F'[φ(x)]|x=0
=F'(y)|x=0
=lim(x→0) [F(y)-F(0)]/(x-0)
=lim(x→0) {[F(y)-F(0)]/(y-0)}· [(y-0)/(x-0)]
上式中:
lim(x→0) y
=lim(x→0) x²sin(1/x)
显然:-x²≤x²sin(1/x)≤x²
而:
lim(x→0) -x²=0
lim(x→0) x²=0
由夹逼准则:
lim(x→0) x²sin(1/x) =0=φ(0)
因此,在x=0处,y=φ(x)连续
∴
lim(x→0) [F(y)-F(0)]/(y-0)
=lim(y→0) [F(y)-F(0)]/(y-0)
=F'(0)
而:
φ'(0)
=lim(x→0) (y-0)/(x-0)
=lim(x→0) y/x
=lim(x→0) φ(x)/x
=lim(x→0) xsin(1/x)
=0
∴
F'[φ(x)]|x=0
=lim(x→0) {[F(y)-F(0)]/(y-0)}· [(y-0)/(x-0)]
=lim(y→0) [F(y)-F(0)]/(y-0)} · lim(x→0) (y-0)/(x-0)
=F'(0)·φ'(0)
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询