双曲线C1:X^2/a^2-y^2/b^2=1的左准线为L左右焦点分别为F1,F2;抛物线C2的准线为L焦点为F2,C1和C2的一个焦

双曲线C1:X^2/a^2-y^2/b^2=1的左准线为L左右焦点分别为F1,F2;抛物线C2的准线为L焦点为F2,C1和C2的一个焦点为M,则[F1F2]/[MF1]-... 双曲线C1:X^2/a^2-y^2/b^2=1的左准线为L左右焦点分别为F1,F2;抛物线C2的准线为L焦点为F2,C1和C2的一个焦点为M,则[F1F2]/[MF1]-[MF1]/[MF2]等于 展开
sunzhenwei114
2012-06-15 · 知道合伙人教育行家
sunzhenwei114
知道合伙人教育行家
采纳数:776 获赞数:6174
毕业于阜新矿业学院基础部数学师范专业,擅长初高中数学教学,熟练操作excel,信息技术与数学整合是特长。

向TA提问 私信TA
展开全部
双曲线C1:X^2/a^2-y^2/b^2=1的左准线为L左右焦点分别为F1,F2;抛物线C2的准线为L焦点为F2,C1和C2的一个交点为M,则[F1F2]/[MF1]-[MF1]/[MF2]等于
设双曲线C1的半焦距为c,离心率e=c/a,M点到L的距离为d
由题意|F1F2|=2c,M点在双曲线C1上有|MF1|/d=e→|MF1|=de;
抛物线C2的准线为L焦点为F2,M在抛物线上有|MF2|=d;
[F1F2]/[MF1]-[MF1]/[MF2]
=2c/(de)-de/d
=2a/d-e
又M点在双曲线C1上有|MF1|-|MF2|=2a,则de-d=2a→d=2a/(e-1)→2a/d=e-1→2a/d-e=-1
所以[F1F2]/[MF1]-[MF1]/[MF2]=-1
追问
双曲线C1:X^2/a^2-y^2/b^2=1的左准线为即X=-(a^2/c).抛物线C2的准线为LX=-(a^2/c)..焦点为F2(c,0),抛物线有抛物线的性质可知a^2/c=c知a^2=c^2。这样双曲线就不存在了?
追答
注意:
抛物线方程不是标准方程,顶点不在原点,本题中a^2/c≠c。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式