已知函数f(x)=alnx/x+1+b/x曲线f(x)在点(1,f(1))出的切线方程为x+2y-3=0 ,求a b的值

(2)证明当x>0且x≠1时,f(x)>lnx/x-1... (2) 证明当x>0且x≠1时,f(x)> lnx/x-1 展开
fnxnmn
2012-06-12 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6723万
展开全部
(1)
切线方程变形为 y=(-1/2)x+3/2,
可见斜率k=-1/2, f(1)=1
f(x)=alnx/(x+1)+b/x,
f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2
已知k=f'(1)=(2a)/4-b=-1/2 即a-2b=-1 (*)
f(1)=b=1
代入(*)得 a=1
∴f(x)=lnx/(x+1)+1/x
(2)
由(1)知f(x)=lnx/(x+1)+1/x
所以f(x)-lnx/(x-1)
= lnx/(x+1)+1/x-lnx/(x-1)
=-2 lnx/﹙x²-1﹚+1/x
=[1/(1-x²)]*[(2lnx-﹙x²-1﹚/x)]

令h(x)=2lnx-﹙x²-1﹚/x(x>0),
h′(x)=2/x-[2x²-(x²-1)]/x²=-(x-1)²/x²
所以当x≠1时,h′(x)<0,所以函数单调递减,而h(1)=0,

当x∈(0,1)时,h(x)>h(1)=0
此时1/(1-x²)>0,
可得1/﹙1-x²﹚*h(x)>0;

x∈(1,+∞)时,h(x)<h(1)=0,
此时1/(1-x²)<0,
可得1/(1-x²)*h(x)>0

从而当x>0且x≠1时,
f(x)-[lnx/﹙x-1﹚]>0
即f(x)>lnx/﹙x-1﹚
追问
=-2 lnx/﹙x²-1﹚+1/x
=[1/(1-x²)]*[(2lnx-﹙x²-1﹚/x)]
这一步是怎么来的哦
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式