1+1为什么等于二?
展开全部
用以下的方式界定0,1和2
0 := {x: x ={y: ~(y = y)}}
1 := {x: y(yεx.&.x\{y}ε0)}
2 := {x: y(yεx.&.x\{y}ε1)}
界定自然数
0:= ∅, 1:= {∅} = {0} =0∪{0},
2:= {∅,{∅}} = {0,1} = 1∪{1}
我们可以这样证明"1+1 = 2":
首先,可以推知:
αε1<=> (Σx)(α={x})
βε2 <=> (Σx)(Σy)(β={x,y}.&.~(x=y))
ξε1+1 <=> (Σx)(Σy)(β={x}∪{y}.&.~(x=y))
所以对於任意的集合γ,我们有
γε1+1
<=>(Σx)(Σy)(γ={x}∪{y}.&.~(x=y))
<=>(Σx)(Σy)(γ={x,y}.&.~(x=y))
<=> γε2
根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2。]
0 := {x: x ={y: ~(y = y)}}
1 := {x: y(yεx.&.x\{y}ε0)}
2 := {x: y(yεx.&.x\{y}ε1)}
界定自然数
0:= ∅, 1:= {∅} = {0} =0∪{0},
2:= {∅,{∅}} = {0,1} = 1∪{1}
我们可以这样证明"1+1 = 2":
首先,可以推知:
αε1<=> (Σx)(α={x})
βε2 <=> (Σx)(Σy)(β={x,y}.&.~(x=y))
ξε1+1 <=> (Σx)(Σy)(β={x}∪{y}.&.~(x=y))
所以对於任意的集合γ,我们有
γε1+1
<=>(Σx)(Σy)(γ={x}∪{y}.&.~(x=y))
<=>(Σx)(Σy)(γ={x,y}.&.~(x=y))
<=> γε2
根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2。]
展开全部
一个手指加一个手指不等于两个手指吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一定啊,一个苹果加一个苹果等于两个苹果,可是一块软糖加一块软糖等于一块大的软糖,在数学上,1+1=2是规则。也许创规则的人有点二吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询