如何从一阶导数图像看出拐点
2个回答
展开全部
一般地,从一阶导数f'(x)图象的极值点可以看出曲线f(x)的拐点。因为f(x)的二阶导数f''(x)的变号零点,可以得到拐点。而f(x)的二阶导数f''(x)的变号零点是一阶导数f'(x)的极值点。
拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
扩展资料:
一阶导数性质:
单调性
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性
定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询