展开全部
1.抛物线y=(k²-2)x²+m-4kx的对称轴是直线x=2,且最低点在y=-1/2x+2上,求该二次函数的关系式
解:抛物线y=(k²-2)x²+m-4kx的对称轴方程x=-b/(2a)=4k/[2(k²-2)]=2,故:k=2或k=-1
当k=2时,抛物线y=(k²-2)x²+m-4kx简化为:y=2x²-8x+m=2(x-2) ²+m-8,最低点坐标为(2,m-8)在y=-1/2x+2上,即:m-8=-1/2×2+2,故:m=9,故:该二次函数的关系式为:y=2x²-8x+9
当k=-1时,k²-2=-1<0,没有最低点,故舍去
故:该二次函数的关系式为:y=2x²-8x+9
解:抛物线y=(k²-2)x²+m-4kx的对称轴方程x=-b/(2a)=4k/[2(k²-2)]=2,故:k=2或k=-1
当k=2时,抛物线y=(k²-2)x²+m-4kx简化为:y=2x²-8x+m=2(x-2) ²+m-8,最低点坐标为(2,m-8)在y=-1/2x+2上,即:m-8=-1/2×2+2,故:m=9,故:该二次函数的关系式为:y=2x²-8x+9
当k=-1时,k²-2=-1<0,没有最低点,故舍去
故:该二次函数的关系式为:y=2x²-8x+9
追问
另外几道题呢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询