2个回答
展开全部
将f(x)化简得,f(x)=sin2xcosπ/3+cos2xsinπ/3+sin2xcosπ/3-cos2xsinπ/3-1/2=2sin2xcosπ/3-1/2=sin2x-1/2
(I)f(A)=sin2A-1/2=sin2xcosπ/3+cos2xsinπ/3+sin2A=1,得2A=π/2+2kπ,所以角A=π/4+kπ
(II)f(x)=sin2x-1/2在 [ -π/3,-π/4 ] 上单调减,在 [ π/4,π/6 ] 上单调增f(-π/3)=-√3-1/2,f(π/6)=√3-1/2
所以f(x)在-π/4处取最小值f(-π/4)=-3/2,在π/6处取最大值√3-1/2
f(x)在区间 [ -π/3,π/6 ] 上的取值范围是 [ -3/2,√3-1/2 ]
(I)f(A)=sin2A-1/2=sin2xcosπ/3+cos2xsinπ/3+sin2A=1,得2A=π/2+2kπ,所以角A=π/4+kπ
(II)f(x)=sin2x-1/2在 [ -π/3,-π/4 ] 上单调减,在 [ π/4,π/6 ] 上单调增f(-π/3)=-√3-1/2,f(π/6)=√3-1/2
所以f(x)在-π/4处取最小值f(-π/4)=-3/2,在π/6处取最大值√3-1/2
f(x)在区间 [ -π/3,π/6 ] 上的取值范围是 [ -3/2,√3-1/2 ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询