函数的解析性与可导性有什么区别

pesuswr
2012-06-13 · TA获得超过2123个赞
知道小有建树答主
回答量:588
采纳率:0%
帮助的人:599万
展开全部
函数的解析性指的是一个函数,是否可以知道其解析式,以及其奇偶性,单调性,定义域,值域等相关性质的讨论,是对函数整体变化的研究。
函数的可导性指的是,一个函数,在某一点或者某一定义域下,导数是否存在,也就是左右极限是否一致,是对函数某一部分的研究。
猥刷1f
2012-06-13 · TA获得超过1648个赞
知道小有建树答主
回答量:982
采纳率:0%
帮助的人:488万
展开全部
函数代表自变量和因变量的关系,就是当x变化y会怎样变化或反之。函数的解析性指的是一个函数,是否可以知道其解析式,以及其奇偶性,单调性,定义域,值域等相关性质的讨论,是对函数整体变化的研究。微积分其实代表一个函数的斜率走向趋势。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。比如二次函数y=x平方,对其求导可得y=2x,意思就是这个二次函数的每一点的斜率变化为y=2x。所以这两者不同。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
usxygq
2012-06-23 · TA获得超过4556个赞
知道大有可为答主
回答量:1858
采纳率:60%
帮助的人:639万
展开全部
这个不是中学的问题,而是学复变的时候遇到的问题吧?
在复变里,函数在一个区域内可导则称函数在这个区域内解析!
而函数如果在一点可导,不能说函数在这点解析。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式