从1到100中选出两个不同的数,并且这两个数之和大于100,共有几种选法

 我来答
华华自在客来
2019-10-02 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:628万
展开全部
从1,2,3,…,97,98,99,100中取出1,有1+100>100,取法数1个;
取出2,有2+100>100,2+99>100,取法数2个;
取出3,取法数3个,

取出k,取法数k个,

取出50,有50+51>100,50+52>100,…,50+100>100,取法有50个.
所以取出数字1至50,共得取法数N1=1+2+3+…+50=1275.
取出51,有51+52>100,51+53>100,…,51+100>100,共49个;
取出52,则有48个,

取出k,取法数100-k个,

取出99,只有1个,
取出100,没有符合的情况.
所以取出数字51至100(N1中取过的不在取),则N2=49+48+…+2+1=1225.
故总的取法有N=N1+N2=2500个.
hsfz876
2012-06-13 · TA获得超过1.3万个赞
知道大有可为答主
回答量:4574
采纳率:66%
帮助的人:4217万
展开全部
这是一个组合问题:
设A<B,当:
A=1,B=100
A=2,B=99,100
。。。
A=50,B=51,。。。,100
一共有1+2+。。。+50=1275种取法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式