狭义相对论中尺子缩短的公式是怎么推导的
展开全部
狭义相对论中的公式推导:
一、洛仑兹坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
1、设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
2、可令x=k(X+uT) (1)。又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K。
3、故有X=k(x-ut) (2)。对于y,z,Y,Z皆与速度无关,可得Y=y (3)。
4、Z=z (4)。将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x (5)。
5、(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时由重合点发出一光信号,则对两系分别有x=ct,X=cT。
6、代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ。将γ反代入(2)(5)式得坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
二、速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2);V(y)=v(y)/(γ(1-v(x)u/c^2));V(z)=v(z)/(γ(1-v(x)u/c^2))。
1、V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)。
2、同理可得V(y),V(z)的表达式。
三、尺缩效应:△L=△l/γ或dL=dl/γ。
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ。
四、钟慢效应:△t=γ△τ或dt=dτ/γ。
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T。
五、光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)。光源与探测器在一条直线上运动。
1、B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1)。
2、探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a) (2)。
3、相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3)。
4、由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)。
六、动量表达式:P=Mv=γmv,即M=γm。
1、dt=γdτ,此时γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c。
2、牛顿第二定律在伽利略变换下保持形势不变,即无论在哪个惯性系内牛顿第二定律都成立。
3、牛顿力学中,v=dr/dt,r在坐标变换下形式不变,只要将分母替换为一个不变量就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。
4、牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv。
七、相对论力学基本方程:F=dP/dt。
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。
八、质能方程:E=Mc^2。
1、Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2。
2、即E=Mc^2=Ek+mc^2
九、能量动量关系:E^2=(E0)^2+P^2c^2。
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2。
一、洛仑兹坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
1、设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
2、可令x=k(X+uT) (1)。又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K。
3、故有X=k(x-ut) (2)。对于y,z,Y,Z皆与速度无关,可得Y=y (3)。
4、Z=z (4)。将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x (5)。
5、(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时由重合点发出一光信号,则对两系分别有x=ct,X=cT。
6、代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ。将γ反代入(2)(5)式得坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
二、速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2);V(y)=v(y)/(γ(1-v(x)u/c^2));V(z)=v(z)/(γ(1-v(x)u/c^2))。
1、V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)。
2、同理可得V(y),V(z)的表达式。
三、尺缩效应:△L=△l/γ或dL=dl/γ。
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ。
四、钟慢效应:△t=γ△τ或dt=dτ/γ。
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T。
五、光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)。光源与探测器在一条直线上运动。
1、B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1)。
2、探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a) (2)。
3、相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3)。
4、由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)。
六、动量表达式:P=Mv=γmv,即M=γm。
1、dt=γdτ,此时γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c。
2、牛顿第二定律在伽利略变换下保持形势不变,即无论在哪个惯性系内牛顿第二定律都成立。
3、牛顿力学中,v=dr/dt,r在坐标变换下形式不变,只要将分母替换为一个不变量就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。
4、牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv。
七、相对论力学基本方程:F=dP/dt。
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。
八、质能方程:E=Mc^2。
1、Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2。
2、即E=Mc^2=Ek+mc^2
九、能量动量关系:E^2=(E0)^2+P^2c^2。
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询