计算对曲线积分∫z ds,其中C为螺旋线x=tcost,y=tsint,z=t(0≤t≤t0)
3个回答
展开全部
计算过程如下:
令x=tcost,y=tsint,z=t
dx/dt=cost-tsint
dy/dt=sint+tcost
dz/dt=1
[C]∫z ds=[C]∫t√[(cost-tsint)²+(sint+tcost)²+1]dt
=[C]∫t√[(cos²t-2tsintcost+t²sin²t)+(sin²t+2tsintcost+t²cos²t)+1]dt
=[C]∫t√(t²+2)dt
=(1/2)∫√(t²+2)d(t²+2)
=(1/2)(2/3)(t²+2)^(3/2)︱[0,to]
=(1/3)[(t²o+2)^(3/2)- 2√2]
曲线积分:
两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。
但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。
展开全部
计算对曲线积分∫z ds,其中C为螺旋线x=tcost,y=tsint,z=t(0≤t≤t0)。
解:C:x=tcost,y=tsint,z=t;dx/dt=cost-tsint;dy/dt=sint+tcost;dz/dt=1;
[C]∫z ds=[C]∫t√[(cost-tsint)²+(sint+tcost)²+1]dt
=[C]∫t√[(cos²t-2tsintcost+t²sin²t)+(sin²t+2tsintcost+t²cos²t)+1]dt
=[C]∫t√(t²+2)dt=(1/2)∫√(t²+2)d(t²+2)=(1/2)(2/3)(t²+2)^(3/2)︱[0,to]=(1/3)[(t²o+2)^(3/2)- 2√2]
解:C:x=tcost,y=tsint,z=t;dx/dt=cost-tsint;dy/dt=sint+tcost;dz/dt=1;
[C]∫z ds=[C]∫t√[(cost-tsint)²+(sint+tcost)²+1]dt
=[C]∫t√[(cos²t-2tsintcost+t²sin²t)+(sin²t+2tsintcost+t²cos²t)+1]dt
=[C]∫t√(t²+2)dt=(1/2)∫√(t²+2)d(t²+2)=(1/2)(2/3)(t²+2)^(3/2)︱[0,to]=(1/3)[(t²o+2)^(3/2)- 2√2]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫C z ds=∫[0→t0] t√[(dx/dt)²+(dy/dt)²+(dz/dt)²] dt
=∫[0→t0] t√(t²+2) dt
=(1/2)∫[0→t0] √(t²+2) d(t²+2)
=(1/3)√[(t²+2)³] | [0→t0]
=(1/3)√[(t0²+2)³] - √8/3
=∫[0→t0] t√(t²+2) dt
=(1/2)∫[0→t0] √(t²+2) d(t²+2)
=(1/3)√[(t²+2)³] | [0→t0]
=(1/3)√[(t0²+2)³] - √8/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |