已知函数f(x)=acos2ωx+√3asinωxcosωx+b,x∈R(a>0,ω>0)的最小正周期为π,函数f(x)的最大值是7/4,最小

值是3/4(1)求ω及a、b的值(2)指出f(x)的单调递增区间... 值是3/4
(1)求ω及a、b的值
(2)指出f(x)的单调递增区间
展开
合肥三十六中x
2012-06-15 · TA获得超过1.8万个赞
知道大有可为答主
回答量:9242
采纳率:37%
帮助的人:1.1亿
展开全部
f(x)=a*(1+cos2wx)/2+(√3/2)*sin2wx+b=a*[(1/2)*cos2wx+(√3/2)*sin2wx]+a/2+b
=a*sin(2wx+π/6)+a/2+b
(3/2)*a+b=7/4
(-1/2)*a+b=3/4
{a=1/2 b=1
2π/2w=π ==>w=1
f(x)=1/2)*sin(2x+π/6)+5/4
由-π/2+2kπ≤2x+π/6≤π/2+2kπ得单调增区间:【-π/3+kπ,π/6+kπ】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式