
证明:无论x,y为何值,多项式x^2+y^2-4x+6y+28的值均为正值
展开全部
证明:∵x的平方+y的平方-4x+6y+28=x的平方-4x+4+y的平方+6y+9+15
=(x-2)的平方+(y+3)的平方+15
∵(x-2)的平方≥0 (y+3)的平方 ≥0
∴(x-2)的平方+(y+3)的平方+15 ≥0
∴x的平方+y的平方-4x+6y+28 ≥0
∴x的平方+y的平方-4x+6y+28 均为正值。
=(x-2)的平方+(y+3)的平方+15
∵(x-2)的平方≥0 (y+3)的平方 ≥0
∴(x-2)的平方+(y+3)的平方+15 ≥0
∴x的平方+y的平方-4x+6y+28 ≥0
∴x的平方+y的平方-4x+6y+28 均为正值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询