两道题怎么写

 我来答
烂深盆下聊5771
2017-05-15 · 超过52用户采纳过TA的回答
知道答主
回答量:65
采纳率:0%
帮助的人:20.3万
展开全部
导数f'(x)=2x^2-2a=2(x^2-a)
在x属于(-1,1)时,0<=x^2<1
讨论如下:
(1)a<0
显然,f'(x)>0恒成立,函数单调递增,无极值。
(2)0<=a<1时,
x^2-a=0有2个实数解,x=±√a
函数在(-1,-√a)和(√a,1)时递增;在(-√a,√a)时递减
有两个极值,极大值=f(-√a)
极小值=f(√a)
(3)a>1时
显然,f'(x)<0恒成立,函数单调递减,无极值。

3

已知函数f(x)=lnx+m/x(m∈R).
(1)当m=e时,求f(x)的极小值;
(2)讨论函数g(x)=f’(x)-x/3零点的个数;
(3)若对任意b>a>0,[f(b)-f(a)]/(b-a)<1恒成立,求m的取值范围。
(1)解析:当m=e时,f(x)=lnx+e/x,
令f′(x)=(x-e)/x^2=0==>x=e;
∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;
当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;
∴x=e时,f(x)取得极小值f(e)=lne+e/e=2;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式