4个回答
展开全部
注意到,原函数的定义域为:x≠kπ(k=0,1,2…)
F(x)=(sinx一cosx)sin2x/sinx
=2cosx(sinx一cosx)
=2sinxcosx-2cos²x
=sin2x-cos2x-1
=√2sin(2x+3π/4)-1
求导:F'(x)=2√2cos(2x+3π/4)
满足F'(x)<0,解得x即为原函数的单调减区间:
易知,cos(2x+3π/4)的单调减区间为kπ≤2x+3π/4≤(k+1)π
(kπ-3π/4)/2≤x≤(k+π/4)/2
解得F(x)的单调区间为:[(kπ-3π/4)/2,k+π/4)/2]
F(x)=(sinx一cosx)sin2x/sinx
=2cosx(sinx一cosx)
=2sinxcosx-2cos²x
=sin2x-cos2x-1
=√2sin(2x+3π/4)-1
求导:F'(x)=2√2cos(2x+3π/4)
满足F'(x)<0,解得x即为原函数的单调减区间:
易知,cos(2x+3π/4)的单调减区间为kπ≤2x+3π/4≤(k+1)π
(kπ-3π/4)/2≤x≤(k+π/4)/2
解得F(x)的单调区间为:[(kπ-3π/4)/2,k+π/4)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinx≠0,x≠kπ;
F(x)=2cosx(sinx-cosx)=sin2x-(1+cos2x)
=-1-cos2x+sin2x=-1+√2sin(2x-π/4)
π/2+2kπ≤2x-π/4≤π3/2+2kπ
3π/8+kπ≤x≤π7/8+kπ
所以F(x)的减区间为[3π/8+kπ,π7/8+kπ]
F(x)=2cosx(sinx-cosx)=sin2x-(1+cos2x)
=-1-cos2x+sin2x=-1+√2sin(2x-π/4)
π/2+2kπ≤2x-π/4≤π3/2+2kπ
3π/8+kπ≤x≤π7/8+kπ
所以F(x)的减区间为[3π/8+kπ,π7/8+kπ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
F(x)=(sinx-cosx)*2sinxcosx/sinx
=(sinx-cosx)*2cosx
= 2sinxcosx-(1+cos2x)
=sin2x-cos2x-1
=√2sin(2x-π/4)-1
-π+2Kπ <2x-π/4<-π/2+2Kπ ①
π/2+2Kπ<2x-π/4<π+2kπ ②
不等式组①②自己解X吧,打字太慢了
=(sinx-cosx)*2cosx
= 2sinxcosx-(1+cos2x)
=sin2x-cos2x-1
=√2sin(2x-π/4)-1
-π+2Kπ <2x-π/4<-π/2+2Kπ ①
π/2+2Kπ<2x-π/4<π+2kπ ②
不等式组①②自己解X吧,打字太慢了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询