在四边形ABCD中,角ABC等于角ADC等于90,边AD=CD,BD=4, 则四边形ABCD的面积是
2个回答
展开全部
解:分别过点A、C作AM⊥BD于M,CN⊥BD于N
∵∠ABC=∠ADC=90°, 即四边形ABCD对角互补
∴A、B、C、D四点共圆
又,AD=CD
∴∠ABD=∠CBD = (1/2)*90° = 45° (若两条弦相等,则所对应的圆心角相等)
∴AM=BM = (1/√2)AB,CN=BN = (1/√2)BC
而,∠CDN=∠CAB (同一条弦对应的圆心角相等), ∠CND=∠CBA = 90°
∴△CND∽△CBA
∴DN / AB = CN / BC = 1/√2
即有,(DN+CN) / (AB+BC) = 1/√2 ( 等比 )
而 BN=CN,
即,(DN+BN) / (AB+BC) = BD / (AB+BC) = 1/√2
∴ AB+BC = √2 * BD = 4√2
∴四边形ABCD面积 = S△ABD + S△CBD
= (1/2)AM*BD + (1/2)CN*BD
= (1/2)*(AM+CN)*BD
= (1/2)*(1/√2)* (AB+BC)*BD
= (1/2)*(1/√2)* 4√2 * 4
= 8
∵∠ABC=∠ADC=90°, 即四边形ABCD对角互补
∴A、B、C、D四点共圆
又,AD=CD
∴∠ABD=∠CBD = (1/2)*90° = 45° (若两条弦相等,则所对应的圆心角相等)
∴AM=BM = (1/√2)AB,CN=BN = (1/√2)BC
而,∠CDN=∠CAB (同一条弦对应的圆心角相等), ∠CND=∠CBA = 90°
∴△CND∽△CBA
∴DN / AB = CN / BC = 1/√2
即有,(DN+CN) / (AB+BC) = 1/√2 ( 等比 )
而 BN=CN,
即,(DN+BN) / (AB+BC) = BD / (AB+BC) = 1/√2
∴ AB+BC = √2 * BD = 4√2
∴四边形ABCD面积 = S△ABD + S△CBD
= (1/2)AM*BD + (1/2)CN*BD
= (1/2)*(AM+CN)*BD
= (1/2)*(1/√2)* (AB+BC)*BD
= (1/2)*(1/√2)* 4√2 * 4
= 8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询