线性无关和线性相关所能得到的结论
2个回答
展开全部
一些线性相关和线性无关的推论:部分无关可推出整体相关。整体无关可推出部分无关。
其中线性特性可描述为:
设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),{af(x,Y)+bh(z,y)}*g(z,y)=af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y) 。
定义:
卷积(Convolution)既是一个由含参变量的无穷积分定义的函数,又代表一种运算。其运算性质在线性系统理论、光学成像理论和傅里叶变换及其应用中经常用到。
卷积的运算性质有线性特性,复函数的卷积,可分离变量,卷积符合交换律,卷积符合结合律,坐标缩放性质,卷积位移不变性,函数f(x,y)与函数的卷积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询