2017-10-15
展开全部
lim(x→π/2)(tanx)^sin2x
=e^[lim(x→π/2)sin2xlntanx
=e^[lim(x→π/2)sin2x/(1/lntanx)]
=e^[lim(x→π/2)2cos2xtanx/sec^2x]
=e^[lim(x→π/2)2cos2xsinxcosx]
=e^[lim(x→π/2)cos2xsin2x]
=e^[lim(x→π/2)1/2sin4x]
=e^[1/2sin(4×π/2)]
=e^0
=1
=e^[lim(x→π/2)sin2xlntanx
=e^[lim(x→π/2)sin2x/(1/lntanx)]
=e^[lim(x→π/2)2cos2xtanx/sec^2x]
=e^[lim(x→π/2)2cos2xsinxcosx]
=e^[lim(x→π/2)cos2xsin2x]
=e^[lim(x→π/2)1/2sin4x]
=e^[1/2sin(4×π/2)]
=e^0
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询