t^2/(1+t^4)dt求不定积分 30
2个回答
展开全部
∫ t^2/(t^4 + 1) dt
= (1/2)∫ [(t^2 + 1) + (t^2 - 1)]/(t^4 + 1) dt
= (1/2)∫ (t^2 + 1)/(t^4 + 1) dt + (1/2)∫ (t^2 - 1)/(t^4 + 1) dt
= (1/2)∫ (1 + 1/t^2)/(t^2 + 1/t^2) dt + (1/2)∫ (1 - 1/t^2)/(t^2 + 1/t^2) dt,分子分母各除以t^2
= (1/2)∫ d(t - 1/t)/[(t - 1/t)^2 + 2] + (1/2)∫ d(t + 1/t)/[(t + 1/t)^2 - 2]
= (1/2)(1/√2)arctan[(t - 1/t)/√2] + (1/2)(1/(2√2))ln| [(t + 1/t) - √2]/[t + 1/t) + √2] | + C
= (√2/4)arctan[t/√2 - 1/(√2t)] + (√2/8)ln| (t² - √2t + 1)/(t² + √2t + 1) | + C
= (1/2)∫ [(t^2 + 1) + (t^2 - 1)]/(t^4 + 1) dt
= (1/2)∫ (t^2 + 1)/(t^4 + 1) dt + (1/2)∫ (t^2 - 1)/(t^4 + 1) dt
= (1/2)∫ (1 + 1/t^2)/(t^2 + 1/t^2) dt + (1/2)∫ (1 - 1/t^2)/(t^2 + 1/t^2) dt,分子分母各除以t^2
= (1/2)∫ d(t - 1/t)/[(t - 1/t)^2 + 2] + (1/2)∫ d(t + 1/t)/[(t + 1/t)^2 - 2]
= (1/2)(1/√2)arctan[(t - 1/t)/√2] + (1/2)(1/(2√2))ln| [(t + 1/t) - √2]/[t + 1/t) + √2] | + C
= (√2/4)arctan[t/√2 - 1/(√2t)] + (√2/8)ln| (t² - √2t + 1)/(t² + √2t + 1) | + C
程经理
2024-10-11 广告
2024-10-11 广告
作为硕方科技(北京)有限公司的工作人员,针对硕方TP76i线号机不切线打到底的问题,我们建议先检查切刀是否损坏或磨损,并检查切刀调整螺丝是否紧固且调整正确。此外,还需确认切割材料是否放置正确,以及半切深度设置是否适合当前材料。如果问题依旧存...
点击进入详情页
本回答由程经理提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询