已知向量组α1,α2,α3线性无关,证明

 我来答
zzllrr小乐
高粉答主

2017-05-23 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78793

向TA提问 私信TA
展开全部
用线性相关的定义证即可。
第(1)题
显然存在不全为零的系数1,-1,1使得
1(a1+a2)-(a2+a3)+1(a3-a1)=0
因此这3个向量线性相关

第(2)题
设任意系数k1,k2,k3使得
k1(a1+2a2)+k2(2a2+3a3)+k3(3a3+a1)=0
即(k1+k3)a1+(2k1+2k2)a2+(3k2+3k3)a3=0
由于a1,a2,a3线性无关
则k1+k3=2k1+2k2=3k2+3k3=0
解得
k1=k2=k3=0

因此这3个向量线性无关
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
186*****388
2017-05-22
知道答主
回答量:29
采纳率:0%
帮助的人:2.8万
展开全部
没接触过高等数学
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
这是什么啊cS
2018-11-20 · TA获得超过393个赞
知道小有建树答主
回答量:494
采纳率:52%
帮助的人:26.1万
展开全部
证明:设k1(α1 + 2α2) + k2(α2 + 2α3) + k3(α3 + 2α1)=0,其中:k1,k2,k3为常数,得: (k1 + 2k3)α1 + (2k1 + k2)α2 + (2k2 + k3)α3=0,且α1,α2,α3线性无关→ k1 + 2k3=0 2k1 + k2=0 2k2 + k3=0 解得:k1=k2=k3=0 故:向量组α1 + 2α2,α2 + 2α3,α3 + 2α1线性无关。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式