如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为CD的中点,且BE⊥CD,连接AE,交BD于点F。求证AE=BE.

用初二的知识解答,急!!!!!!!答对给分。... 用初二的知识解答,急!!!!!!!答对给分。 展开
wan12345678913
2012-06-14 · TA获得超过1219个赞
知道答主
回答量:129
采纳率:0%
帮助的人:30.2万
展开全部
找出AB中点
点G
连接EG
则EG为梯形ABCD中位线
则EG平行且等于二分之一(AD+BC)
则角BGE=角AGE=角ABC=90度
且AG=BG,GE=GE
则三角形AGE全等于三角形BGE
则AE=BE
给分吧!!!!
求爷了 句句真言 真的可用
魔法小问号
2012-06-15 · TA获得超过103个赞
知道答主
回答量:19
采纳率:0%
帮助的人:8.2万
展开全部
解:(1)过点C作CM⊥AB于M,
∵AB∥CD,∠DAB=90°,∴四边形AMCD是矩形,
∴AM=CD,
∵CD=
1
2
AB,
∴AM=BM,
∴AC=BC,
∵在Rt△ACD中,∠ADC=90°,
∴AD2+CD2=AC2=BC2,
∵4BC2=5AD2,
∴CD2=
1
4
AD2,
即CD=
1
2
AD,
∴AD=AB,

(2)由(1)知:∠ADB=∠ABD=45°,
又∵AC=BC,
∴∠CAB=∠CBA,
∴∠CAF=∠CBE,
∴在△ACF和△BCE中,
∠ACF=∠BCE
AC=BC
∠CAF=∠CBE

∴△ACF≌△BCE(ASA),
∴CE=CF;

(3)延长BH交AE于N,
由(2)可得:AE=BF,
∵F,H关于点O对称,
∴BH=BF,∠OBF=∠OBH,
∴BH=AE,
∵∠CAF=∠CBE,
∴∠OBH=∠CAF,
∴∠ANH=∠BOH=90°,即BH⊥AE.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Maoxianyun620
2012-06-15 · TA获得超过496个赞
知道答主
回答量:93
采纳率:0%
帮助的人:64.2万
展开全部
证:∵CE=DE,∠BEC=∠BED=Rt∠,BE共边
∴△BCE≌△BDE(SAS) ∴∠DBE=∠CBE
∵AD∥BC,∠ABC=90° ∴∠BAD=90°
又∵BE⊥CD ∴∠BAD=∠BED=90°
∴A、B、E、D四点共圆
∴∠DAE=∠DBE=∠CBE
∵∠BAE=∠BAD-∠DAE=90°-∠DAE
∠ABE=∠ABC-∠CBE=90°-∠CBE
∴∠BAE=∠ABE
∴AE=BE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式