数据库中表分割和表分区的区别是什么?
1个回答
展开全部
个人认为理论上使用表分割在性能上应该和建立表分区查不多,但是,表分割对于所有的数据库都适用,而表分区只能用于oracle这样的特定的数据库;表分区属于数据库物理设计,表分割属于逻辑设计。
表分区:
表分区是ORACLE对于非常大的表进行优化的一种有效方法, 是非常有效的一种手段, 在很多情况下,比你说的表分割更有效,比如,有一个代码表,使用分区表把100万纪录分在10个分区中(ID 每从1到10万为一个分区),那样写查询语句的时候,只要给出查询条件中所需要的代码,ORACLE自动会定位到对应的分区进行查询,大大降低的查询时间. 而采用表分割,那必须先根据查询的代码指定所要查询的表,才能找到相应的纪录. 而且,如果有下面这样的语句,查询的条件是跨分区的:
SELECT * FROM MYTABLE WHERE ID BETWEEN 99000 AND 10111;
在分区表中是非常容易实现的,ORACLE会自动在两个分区中查询;而采用表分割的话是否必须写成两个查询语句在UNION ALL。
事实上,大型的数据库都有对大表的特殊处理方式(类似于分区表),如果太强调可移植性而放弃这些最重要的特性的话,那性能很可能受到很大的影响.
即便是oracle数据库,当数据量很大时,用分表比用表分区要快些,尤其是在表用到group by求和等操作。
我也认为表分区要好一些,也就是一般说来的分区表,对这些表操作起来有很多强大的功能,说他强大主要是体现在对与表中有海量数据的情况之下的,试问大家一个其中有1亿条记录的表你是否会经常的将其移植到其他数据库系统当中去呢?
表分区基于物理存储,还有就是基于分区的索引可以使用,很不错的,当然,这些都是在海量数据情况之下的比较,但是如果真要是数据量不大的情况下比较,我想要比较分区表和表分割就没什么意思了。
表分区的效果对硬件有所依赖,而且效果恐怕不如诸位想象中那么好。我做过一点测试,很失望。
而表分割的效率提升在很多时候(不是所有时候)是很明显的。
当然这都是在巨型表的前提下讨论,缩小表和索引的规模有利于提高效率,这正是分割表的特点。
表分割:
1、水平分割:根据一列或多列数据的值把数据行放到两个独立的表中。
水平分割通常在下面的情况下使用:A 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度。B 表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用。C需要把数据存放到多个介质上。
例如法规表law就可以分成两个表active-law和 inactive-law。activea-authors表中的内容是正生效的法规,是经常使用的,而inactive-law表则使已经作废的法规,不常被查询。水平分割会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要union操作。在许多数据库应用中,这种复杂性会超过它带来的优点,因为只要索引关键字不大,则在索引用于查询时,表中增加两到三倍数据量,查询时也就增加读一个索引层的磁盘次数。
2、垂直分割:把主码和一些列放到一个表,然后把主码和另外的列放到另一个表中。
如果一个表中某些列常用,而另外一些列不常用,则可以采用垂直分割,另外垂直分割可以使得数据行变小,一个数据页就能存放更多的数据,在查询时就会减少I/O 次数。其缺点是需要管理冗余列,查询所有数据需要join操作。
表分区:
表分区是ORACLE对于非常大的表进行优化的一种有效方法, 是非常有效的一种手段, 在很多情况下,比你说的表分割更有效,比如,有一个代码表,使用分区表把100万纪录分在10个分区中(ID 每从1到10万为一个分区),那样写查询语句的时候,只要给出查询条件中所需要的代码,ORACLE自动会定位到对应的分区进行查询,大大降低的查询时间. 而采用表分割,那必须先根据查询的代码指定所要查询的表,才能找到相应的纪录. 而且,如果有下面这样的语句,查询的条件是跨分区的:
SELECT * FROM MYTABLE WHERE ID BETWEEN 99000 AND 10111;
在分区表中是非常容易实现的,ORACLE会自动在两个分区中查询;而采用表分割的话是否必须写成两个查询语句在UNION ALL。
事实上,大型的数据库都有对大表的特殊处理方式(类似于分区表),如果太强调可移植性而放弃这些最重要的特性的话,那性能很可能受到很大的影响.
即便是oracle数据库,当数据量很大时,用分表比用表分区要快些,尤其是在表用到group by求和等操作。
我也认为表分区要好一些,也就是一般说来的分区表,对这些表操作起来有很多强大的功能,说他强大主要是体现在对与表中有海量数据的情况之下的,试问大家一个其中有1亿条记录的表你是否会经常的将其移植到其他数据库系统当中去呢?
表分区基于物理存储,还有就是基于分区的索引可以使用,很不错的,当然,这些都是在海量数据情况之下的比较,但是如果真要是数据量不大的情况下比较,我想要比较分区表和表分割就没什么意思了。
表分区的效果对硬件有所依赖,而且效果恐怕不如诸位想象中那么好。我做过一点测试,很失望。
而表分割的效率提升在很多时候(不是所有时候)是很明显的。
当然这都是在巨型表的前提下讨论,缩小表和索引的规模有利于提高效率,这正是分割表的特点。
表分割:
1、水平分割:根据一列或多列数据的值把数据行放到两个独立的表中。
水平分割通常在下面的情况下使用:A 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度。B 表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用。C需要把数据存放到多个介质上。
例如法规表law就可以分成两个表active-law和 inactive-law。activea-authors表中的内容是正生效的法规,是经常使用的,而inactive-law表则使已经作废的法规,不常被查询。水平分割会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要union操作。在许多数据库应用中,这种复杂性会超过它带来的优点,因为只要索引关键字不大,则在索引用于查询时,表中增加两到三倍数据量,查询时也就增加读一个索引层的磁盘次数。
2、垂直分割:把主码和一些列放到一个表,然后把主码和另外的列放到另一个表中。
如果一个表中某些列常用,而另外一些列不常用,则可以采用垂直分割,另外垂直分割可以使得数据行变小,一个数据页就能存放更多的数据,在查询时就会减少I/O 次数。其缺点是需要管理冗余列,查询所有数据需要join操作。
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |