求函数解析式的几种方法
2个回答
展开全部
求函数的解析式的方法
求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多, 求函数的解析式是函数的常见问题 , 也是高考的常规题型之一 , 方法众多 , 下面 对一些常用的方法一一辨析. 对一些常用的方法一一辨析. 换元法: g(x)) f(x)的解析式 一般的可用换元法,具体为: 的解析式, 一.换元法:已知 f(g(x)),求 f(x)的解析式,一般的可用换元法,具体为: t=g(x),在求出 f(t)可得 的解析式。 的取值范围。 令 t=g(x),在求出 f(t)可得 f(x)的解析式。换元后要确定新元 t 的取值范围。 例题 1.已知 f(3x 1)=4x 3, 求 f(x)的解析式.
x 1 练习 1.若 f ( ) = ,求 f (x) . x 1− x
2.已知 f ( x 1) = x 2 x ,求 f ( x 1)
f(g(x))内的 g(x)当做整体 当做整体, 二.配凑法:把形如 f(g(x))内的 g(x)当做整体,在解析式的右端整理成只含 配凑法: g(x)的形式 的形式, g(x)用 代替。 有 g(x)的形式,再把 g(x)用 x 代替。 一般的利用完全平方公式 1 1 例题 2.已知 f ( x − ) = x 2 2 , 求 f (x) 的解析式. x x
练习 3.若 f ( x 1) = x 2 x ,求 f (x) .
待定系数法:已知函数模型( 一次函数,二次函数,指数函数等 数等) 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求 解析式,首先设出函数解析式, 解析式,首先设出函数解析式,根据已知条件代入求系数 例 3. (1)已知一次函数 f ( x ) 满足 f (0) = 5 ,图像过点 ( −2,1) ,求 f ( x ) ;
(2)已知二次函数 g ( x ) 满足 g (1) = 1 , g ( −1) = 5 ,图像过原点,求 g ( x ) ;
(3)已知二次函数 h( x) 与 x 轴的两交点为 ( −2, 0) , (3, 0) ,且 h(0) = −3 ,求 h( x) ;
(4)已知二次函数 F ( x ) ,其图像的顶点是 ( −1, 2) ,且经过原点,求 F ( x ) .
练习 4.设二次函数 f (x) 满足 f ( x − 2) = f (− x − 2) ,且图象在 y 轴上截距为 1,在 x 轴上截得的线段长为 2 2 ,求 f (x) 的表达式.
5. 设 f (x) 是一次函数,且 f [ f ( x)] = 4 x 3 ,求 f (x)
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成 解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程, 方程组, 方程组,利用消元法求 f(x)的解析式 例题 4.设函数 f (x) 是定义(-∞,0)∪(0, ∞)在上的函数,且满足关系式
1 3 f ( x) 2 f ( ) = 4 x ,求 f (x) 的解析式. x
练习 6.若 f ( x) f (
x −1 ) = 1 x ,求 f (x) . x
7.
设 f (x) 为偶函数, g (x) 为奇函数,又 f ( x) g ( x) =
1 , 试求 f ( x)和g ( x) 的 x −1
解析式
f(x)的解析式 的解析式, 五.利用给定的特性求解析式;一般为已知 x>0 时, f(x)的解析式,求 x<0 时, 利用给定的特性求解析式 一般为已知 f(x)的解析式 的解析式。 f(-x)的解析式 的解析式, =f(-x)或 f(x)=-f(f(x)的解析式。首先求出 f(-x)的解析式,根据 f(x)=f(-x)或 f(x)=-f(-x) 求得 f(x) 例题 5 设 f (x) 是偶函数,当 x>0 时, f ( x) = e ⋅ x 2 e x ,求当 x<0 时, f (x) 的表 达式.
练习 8. x∈R, f (x) 满足 f ( x) = − f ( x 1) ,且当 x∈[-1,0]时, f ( x) = x 2 2 x 对 求当 x∈[9,10]时 f (x) 的表达式.
9. x∈R, f (x) 满足 f ( x) = − f ( x 1) , . 对 且当 x∈[-1, 时, f ( x) = x 2 2 x , 0]时 的表达式. 求当 x∈[9,10]时 f (x) 的表达式 时
归纳递推法:利用已知的递推公式,写出若干几项, 六.归纳递推法:利用已知的递推公式,写出若干几项,利用数列的思想从中 找出规律, f(x)的解析式 (通项公式) 的解析式。 (通项公式 找出规律,得到 f(x)的解析式。 通项公式) x −1 例题 6.设 f ( x) = ,记 f n ( x) = f { f [L f ( x)]},求 f 2004 ( x) . x 1
练习 10.若 f ( x y ) = f ( x) ⋅ f ( y ) ,且 f (1) = 2 ,
f (2) f (3) f (4) f (2005) L . f (1) f (2) f (3) f (2004)
求值
七.相关点法;一般的,设出两个点,一点已知,一点未知,根据已知找到两点 相关点法;一般的,设出两个点,一点已知,一点未知, 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 (轨 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 轨 ( 迹法) 迹法) 例题 7:已知函数 y=f(x)的图像与 y=x2 x 的图像关于点(-2,3)对称,求 f(x) 的解析式。
练习 11.已知函数 f ( x) = 2 x 1 ,当点 P(x,y)在 y= f (x) 的图象上运动时,点 Q( −
y x , )在 y=g(x)的图象上,求函数 g(x). 2 3
的抽象函数, 八.特殊值法;一般的,已知一个关于 x,y 的抽象函数,利用特殊值去掉一个未 特殊值法;一般的, 的解析式。 知数 y,得出关于 x 的解析式。 例题 8:函数 f(x)对一切实数 x,y 均有 f(x y)-f(y)=(x 2y 1)x 成立,且 f(1)=0.求 f(x)的解析式。
九.图像法;观察图像的特点和特殊点,可用代入法,或根据函数图像的性质进 图像法;观察图像的特点和特殊点,可用代入法, 行解题。注意定义域的变化。 行解题。注意定义域的变化。 y 例题 9. 图中的图象所表示的函数的解析式为( B ) 3 3 A. y = x − 1 (0 ≤ x ≤ 2) 2 2 3 3 B. y = − x − 1 (0 ≤ x ≤ 2) 2 2 3 O x 1 2 C. y = − x − 1 (0 ≤ x ≤ 2) 2
D. y = 1 − x − 1
(0 ≤ x ≤ 2)
第 7 题图
总结:求函数的解析式的方法较多,应根椐题意灵活选择, 总结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点, 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点,应 保证各种有关量均有意义。求出函数的解析式最后要写上函数的定义域, 保证各种有关量均有意义。求出的函数的解析式最后要写上函数的定义域,这 是容易遗漏和疏忽的地方。 是容易遗漏和疏忽的地方。
求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多, 求函数的解析式是函数的常见问题 , 也是高考的常规题型之一 , 方法众多 , 下面 对一些常用的方法一一辨析. 对一些常用的方法一一辨析. 换元法: g(x)) f(x)的解析式 一般的可用换元法,具体为: 的解析式, 一.换元法:已知 f(g(x)),求 f(x)的解析式,一般的可用换元法,具体为: t=g(x),在求出 f(t)可得 的解析式。 的取值范围。 令 t=g(x),在求出 f(t)可得 f(x)的解析式。换元后要确定新元 t 的取值范围。 例题 1.已知 f(3x 1)=4x 3, 求 f(x)的解析式.
x 1 练习 1.若 f ( ) = ,求 f (x) . x 1− x
2.已知 f ( x 1) = x 2 x ,求 f ( x 1)
f(g(x))内的 g(x)当做整体 当做整体, 二.配凑法:把形如 f(g(x))内的 g(x)当做整体,在解析式的右端整理成只含 配凑法: g(x)的形式 的形式, g(x)用 代替。 有 g(x)的形式,再把 g(x)用 x 代替。 一般的利用完全平方公式 1 1 例题 2.已知 f ( x − ) = x 2 2 , 求 f (x) 的解析式. x x
练习 3.若 f ( x 1) = x 2 x ,求 f (x) .
待定系数法:已知函数模型( 一次函数,二次函数,指数函数等 数等) 三.待定系数法:已知函数模型(如:一次函数,二次函数,指数函数等)求 解析式,首先设出函数解析式, 解析式,首先设出函数解析式,根据已知条件代入求系数 例 3. (1)已知一次函数 f ( x ) 满足 f (0) = 5 ,图像过点 ( −2,1) ,求 f ( x ) ;
(2)已知二次函数 g ( x ) 满足 g (1) = 1 , g ( −1) = 5 ,图像过原点,求 g ( x ) ;
(3)已知二次函数 h( x) 与 x 轴的两交点为 ( −2, 0) , (3, 0) ,且 h(0) = −3 ,求 h( x) ;
(4)已知二次函数 F ( x ) ,其图像的顶点是 ( −1, 2) ,且经过原点,求 F ( x ) .
练习 4.设二次函数 f (x) 满足 f ( x − 2) = f (− x − 2) ,且图象在 y 轴上截距为 1,在 x 轴上截得的线段长为 2 2 ,求 f (x) 的表达式.
5. 设 f (x) 是一次函数,且 f [ f ( x)] = 4 x 3 ,求 f (x)
四.解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成 解方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程, 方程组, 方程组,利用消元法求 f(x)的解析式 例题 4.设函数 f (x) 是定义(-∞,0)∪(0, ∞)在上的函数,且满足关系式
1 3 f ( x) 2 f ( ) = 4 x ,求 f (x) 的解析式. x
练习 6.若 f ( x) f (
x −1 ) = 1 x ,求 f (x) . x
7.
设 f (x) 为偶函数, g (x) 为奇函数,又 f ( x) g ( x) =
1 , 试求 f ( x)和g ( x) 的 x −1
解析式
f(x)的解析式 的解析式, 五.利用给定的特性求解析式;一般为已知 x>0 时, f(x)的解析式,求 x<0 时, 利用给定的特性求解析式 一般为已知 f(x)的解析式 的解析式。 f(-x)的解析式 的解析式, =f(-x)或 f(x)=-f(f(x)的解析式。首先求出 f(-x)的解析式,根据 f(x)=f(-x)或 f(x)=-f(-x) 求得 f(x) 例题 5 设 f (x) 是偶函数,当 x>0 时, f ( x) = e ⋅ x 2 e x ,求当 x<0 时, f (x) 的表 达式.
练习 8. x∈R, f (x) 满足 f ( x) = − f ( x 1) ,且当 x∈[-1,0]时, f ( x) = x 2 2 x 对 求当 x∈[9,10]时 f (x) 的表达式.
9. x∈R, f (x) 满足 f ( x) = − f ( x 1) , . 对 且当 x∈[-1, 时, f ( x) = x 2 2 x , 0]时 的表达式. 求当 x∈[9,10]时 f (x) 的表达式 时
归纳递推法:利用已知的递推公式,写出若干几项, 六.归纳递推法:利用已知的递推公式,写出若干几项,利用数列的思想从中 找出规律, f(x)的解析式 (通项公式) 的解析式。 (通项公式 找出规律,得到 f(x)的解析式。 通项公式) x −1 例题 6.设 f ( x) = ,记 f n ( x) = f { f [L f ( x)]},求 f 2004 ( x) . x 1
练习 10.若 f ( x y ) = f ( x) ⋅ f ( y ) ,且 f (1) = 2 ,
f (2) f (3) f (4) f (2005) L . f (1) f (2) f (3) f (2004)
求值
七.相关点法;一般的,设出两个点,一点已知,一点未知,根据已知找到两点 相关点法;一般的,设出两个点,一点已知,一点未知, 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 (轨 之间的联系, 把已知点用未知点表示, 最后代入已知点的解析式整理出即可。 轨 ( 迹法) 迹法) 例题 7:已知函数 y=f(x)的图像与 y=x2 x 的图像关于点(-2,3)对称,求 f(x) 的解析式。
练习 11.已知函数 f ( x) = 2 x 1 ,当点 P(x,y)在 y= f (x) 的图象上运动时,点 Q( −
y x , )在 y=g(x)的图象上,求函数 g(x). 2 3
的抽象函数, 八.特殊值法;一般的,已知一个关于 x,y 的抽象函数,利用特殊值去掉一个未 特殊值法;一般的, 的解析式。 知数 y,得出关于 x 的解析式。 例题 8:函数 f(x)对一切实数 x,y 均有 f(x y)-f(y)=(x 2y 1)x 成立,且 f(1)=0.求 f(x)的解析式。
九.图像法;观察图像的特点和特殊点,可用代入法,或根据函数图像的性质进 图像法;观察图像的特点和特殊点,可用代入法, 行解题。注意定义域的变化。 行解题。注意定义域的变化。 y 例题 9. 图中的图象所表示的函数的解析式为( B ) 3 3 A. y = x − 1 (0 ≤ x ≤ 2) 2 2 3 3 B. y = − x − 1 (0 ≤ x ≤ 2) 2 2 3 O x 1 2 C. y = − x − 1 (0 ≤ x ≤ 2) 2
D. y = 1 − x − 1
(0 ≤ x ≤ 2)
第 7 题图
总结:求函数的解析式的方法较多,应根椐题意灵活选择, 总结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点, 都应注意自变量的取值范围的变化,对于实际问题材,同样需注意这一点,应 保证各种有关量均有意义。求出函数的解析式最后要写上函数的定义域, 保证各种有关量均有意义。求出的函数的解析式最后要写上函数的定义域,这 是容易遗漏和疏忽的地方。 是容易遗漏和疏忽的地方。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询