一道数学题,我不会心疼分的

1到120,求合数与素数的个数[不提倡列出再数!!!]希望有讲解... 1到120,求合数与素数的个数

[不提倡列出再数!!!]

希望有讲解
展开
 我来答
百度网友5719d4fa7
2006-03-01 · 超过12用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:34.8万
展开全部
  解法1:120以内:

  ① 既不是素数又不是合数的数有一个,即“1”;

  ② 素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、109、113、共30个。

  所以不超过120的合数有120-1-30=89(个)

  (附:筛法:从小到大按顺序写出1-120的所有自然数:

  先划掉1,保留2,然后划掉2的所有倍数4,6,…120等;保留3,再划掉所有3的倍数6,9…117、120等;保留5,再划掉5的所有倍数10,15,…120;保留7,再划掉7的所有倍数,…这样,上面数表中剩下的数就是120以内的所有素数,这种方法是最古老的寻找素数的方法,叫做“埃斯托拉‘筛法’”)

  说明:当n不很大时,计算1-n中的合数的个数困难不大;但当n很大时,利用筛法就很困难、很费时了,必须另觅他途。

  [分析2]受解法1的启发,如果能找出1-n中质数的个数m,则n-1-m就是不超过n的合数的个数。由初等数论中定理:a是大于1的整数。如果所有不大于√a的质数都不能整除a,那么a是质数。因为120<121=112,√120<11,所以不超过120的合数必是2或3或5或7的倍数,所以只要分别计算出不超过120的2、3、5、7的倍数,再利用“容斥原理”即可。

  解法2:设S1={a∣1≤3≤120,2∣a};S2={b∣1≤b≤120,3∣b};S3={c∣1≤3≤120,5∣c};S4={d∣1≤d≤120,7∣d},则有:

  card(S1)=[120/2]=60,card(S2)=[120/3]=40,card(S3)=[120/5]=24,card(S4)=[120/7]=17;

  ([n]表示n的整数部分,例如[2,4]=2,…)

  card(S1∩S2)=[120/2×3]=20,card(S1∩S3)=[120/2×5]=12,
  card(S1∩S4)=[120/2×7]=8,card(S2∩S3)=[120/3×5]=8,
  card(S2∩S4)=[120/3×7]=5,card(S3∩S4)[120/5×7]=3,
  card(S1∩S2∩S3)[120/2×3×5]=4,card(S1∩S2∩S4)=[120/2×3×7]=2,
  card(S1∩S3∩S4)=[120/2×5×7]=1,card(S2∩S3∩S4)=[120/3×5×7]=1,
  card(S1∩S2∩S3∩S4)=[120/2×3×5×7]=0

  ∴card(S1∪S2∪S3∪S4)=card(S1)+card(S2)+card(S3)+card(S4)-card(S1∩S2)-card(S1∩S3)-card(S1∩S4)-card(S2∩S3)-card(S2∩S4)-card(S3∩S4)+card(S1∩S2∩S3)+card(S1∩S2∩S4)+card(S1∩S3∩S4)+card(S2∩S3∩S4)-card(S1∩S2∩S3∩S4)=(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0=141-56+8=93

  ∵2,3,5,7是质数

  ∴93-4=89

  即不超过120的合数共有89个。
paulmeng
2006-03-01 · 超过16用户采纳过TA的回答
知道答主
回答量:68
采纳率:0%
帮助的人:45.4万
展开全部
楼上的太强了,这么详细!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sindy8328
2006-03-03 · TA获得超过187个赞
知道答主
回答量:71
采纳率:0%
帮助的人:26.1万
展开全部
呵呵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式