展开全部
an
=(1/π)∫(0->2π) [(π-x)/2] .sin(nx) dx
=-[1/(2nπ)]∫(0->2π) (π-x) . dcos(nx)
=-[1/(2nπ)] [ (π-x) .cos(nx) ]|(0->2π) -[1/(2nπ)]∫(0->2π) cos(nx) dx
=1/n - [1/(2nπ)]∫(0->2π) cos(nx) dx
=1/n - [1/(2n^2.π)] [sin(nx)] |(0->2π)
=1/n - 0
=1/n
=(1/π)∫(0->2π) [(π-x)/2] .sin(nx) dx
=-[1/(2nπ)]∫(0->2π) (π-x) . dcos(nx)
=-[1/(2nπ)] [ (π-x) .cos(nx) ]|(0->2π) -[1/(2nπ)]∫(0->2π) cos(nx) dx
=1/n - [1/(2nπ)]∫(0->2π) cos(nx) dx
=1/n - [1/(2n^2.π)] [sin(nx)] |(0->2π)
=1/n - 0
=1/n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询