浅析如何在小学数学中培养学生解答分数应用题能力
展开全部
应用题既是小学数学的重要组成部分,又是小学数学教学的重点和难点,还是学生在解题和应用中较易出错的题型。分数应用题的数量关系比较抽象、隐蔽,学习和解答分数应用题,不仅能培养小学生分析问题和解决问题的能力,更对其今后发展大有裨益。基于此,我根据自己的教学实践,从以下七个方面谈谈分数应用题教学。
一、培养学生良好的思维品质
思维是智力的核心,是理解、掌握知识的重要心理因素,因此要重视学生思维品质的培养。我认为,培养学生对概念、题型结构的思维深刻性很重要。在教学中,我通过引导,让学生了解分数应用题有关概念的本质属性,探究数量关系,掌握解题思路及其推理过程,从而对分数应用题的知识有了正确的认识,进而培养学生思维的灵活性、独立性、敏捷性和深刻性。
二、巧用单位“1”
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义;单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来分析解答的,所以要把这个关系式吃透,从中总结出“一找:二看,三判断”的解答步骤。找:找单位“1”;看:看单位“1”是已知还是未知;判断:已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学能有相当大的帮助。
三、借助线段图找出解题方法
分数应用题的数量关系比较抽象、隐蔽,如果根据题意画出线段图,可使抽象变具体,隐蔽明朗化,从而借助线段图揭示的数量关系可直观地找出解题方法,甚至有的题还可找到简捷的解法。
在教复杂的分数应用题时,要抓住例题中最具有代表性的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”的两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分率:对应量,所以单位“1”’对应量÷对应分率。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分率。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的l+(或―)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
四、从确定对应入手找出解题方法
分数是小学教学中既抽象而较实用的一类知识。它的概念、法则、性质等,对小学生来说,仍是比较抽象的知识,是较难理解的。尤其是关于分数的应用题,它牵涉面广,解答过程又易于混淆。但分数应用题中有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地确定“量率对应”是解题的关键。我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法。
五、通过统一标准量找出解题方法
在一道分数应用题中,如果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某一个量为标准量,将其余量的对应分率统一到这个标准量上来,才可列式解答。
例:果园里有苹果树和梨树共420棵,苹果树棵数的1/3等于梨树的4/9,问这两种果树各有多少棵?
题中的1/3是以苹果树为标准量,4/9是以梨树为标准量,解题时必须统一成一个标准量。
若以苹果树为单位“1”,则有1×1/3;梨树×4/9,那么梨树就相当于单位“1”的1/3÷4/9,两种果树的总棵数就相当于单位“1”的(1+1/3÷4/9),于是列式为:
420÷(1+1/3÷4/9):240(棵)……苹果树
240÷(1/3÷4/9):180(棵)……梨树
也可以把梨树看作单位“1”,或把两种果树的总棵数,或者相差棵数看作单位“1”。
六、通过假设推算找出解题方法
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里的数量关系推算,所得的结果则发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。例:红花村修一条水渠,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修。这条水渠长多少米?假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米;假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中又要减少5米,于是条件变为“第一周修了全长的2/5,第二周修了全长的1/4,还剩下(282+10-5)米没有修。把这条水渠全长看作单位“1”,那么(282+10-5)米的对应分率就是(1-2/5-1/4)。于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)
七、培养一些解题技巧
有些分数应用题,如果按从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。另外,学生由于年龄的关系,对题目的解答是否正确难以作出判断,审题、计算粗心大意,都会影响解题的准确性。因此,教会学生验算和估算答案是否正确,是培养学生良好学习习惯,提高学生解题准确率的必要措施。通过验算既可以使学生发现可能出现的错误、遗漏,及时进行纠正,提高解题的准确率,又可使学生养成良好的学习习惯,对提高学生的学习成绩也有积极作用。
一、培养学生良好的思维品质
思维是智力的核心,是理解、掌握知识的重要心理因素,因此要重视学生思维品质的培养。我认为,培养学生对概念、题型结构的思维深刻性很重要。在教学中,我通过引导,让学生了解分数应用题有关概念的本质属性,探究数量关系,掌握解题思路及其推理过程,从而对分数应用题的知识有了正确的认识,进而培养学生思维的灵活性、独立性、敏捷性和深刻性。
二、巧用单位“1”
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义;单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来分析解答的,所以要把这个关系式吃透,从中总结出“一找:二看,三判断”的解答步骤。找:找单位“1”;看:看单位“1”是已知还是未知;判断:已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学能有相当大的帮助。
三、借助线段图找出解题方法
分数应用题的数量关系比较抽象、隐蔽,如果根据题意画出线段图,可使抽象变具体,隐蔽明朗化,从而借助线段图揭示的数量关系可直观地找出解题方法,甚至有的题还可找到简捷的解法。
在教复杂的分数应用题时,要抓住例题中最具有代表性的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”的两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分率:对应量,所以单位“1”’对应量÷对应分率。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分率。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的l+(或―)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
四、从确定对应入手找出解题方法
分数是小学教学中既抽象而较实用的一类知识。它的概念、法则、性质等,对小学生来说,仍是比较抽象的知识,是较难理解的。尤其是关于分数的应用题,它牵涉面广,解答过程又易于混淆。但分数应用题中有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地确定“量率对应”是解题的关键。我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法。
五、通过统一标准量找出解题方法
在一道分数应用题中,如果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某一个量为标准量,将其余量的对应分率统一到这个标准量上来,才可列式解答。
例:果园里有苹果树和梨树共420棵,苹果树棵数的1/3等于梨树的4/9,问这两种果树各有多少棵?
题中的1/3是以苹果树为标准量,4/9是以梨树为标准量,解题时必须统一成一个标准量。
若以苹果树为单位“1”,则有1×1/3;梨树×4/9,那么梨树就相当于单位“1”的1/3÷4/9,两种果树的总棵数就相当于单位“1”的(1+1/3÷4/9),于是列式为:
420÷(1+1/3÷4/9):240(棵)……苹果树
240÷(1/3÷4/9):180(棵)……梨树
也可以把梨树看作单位“1”,或把两种果树的总棵数,或者相差棵数看作单位“1”。
六、通过假设推算找出解题方法
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里的数量关系推算,所得的结果则发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。例:红花村修一条水渠,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修。这条水渠长多少米?假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米;假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中又要减少5米,于是条件变为“第一周修了全长的2/5,第二周修了全长的1/4,还剩下(282+10-5)米没有修。把这条水渠全长看作单位“1”,那么(282+10-5)米的对应分率就是(1-2/5-1/4)。于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)
七、培养一些解题技巧
有些分数应用题,如果按从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。另外,学生由于年龄的关系,对题目的解答是否正确难以作出判断,审题、计算粗心大意,都会影响解题的准确性。因此,教会学生验算和估算答案是否正确,是培养学生良好学习习惯,提高学生解题准确率的必要措施。通过验算既可以使学生发现可能出现的错误、遗漏,及时进行纠正,提高解题的准确率,又可使学生养成良好的学习习惯,对提高学生的学习成绩也有积极作用。
展开全部
第一要先读清题目。很多孩子在做题的时候比较马虎,题目都没有看清楚就开始做题。这样丢分就开可惜了,一定要养成认真仔细的做题习惯。还有一种可能是孩子读不懂题目,可能是阅读理解有问题,这个问题就需要孩子平常加强阅读。
第二要理清解题思路。如果是家长在家辅导孩子作业,可以试试看用老师的引导方法教导孩子思考的角度和方法。切记要让孩子独立思考,下面是几种不同的应用题常用的解题思路,可以收藏一下给孩子。
第三要用对公式。这个就简单了,主要就是孩子要记清楚公式,不要用错。建议孩子在考试之前把本学期常用的公式梳理一遍,这样在考试的时候就不容易弄混了。
第二要理清解题思路。如果是家长在家辅导孩子作业,可以试试看用老师的引导方法教导孩子思考的角度和方法。切记要让孩子独立思考,下面是几种不同的应用题常用的解题思路,可以收藏一下给孩子。
第三要用对公式。这个就简单了,主要就是孩子要记清楚公式,不要用错。建议孩子在考试之前把本学期常用的公式梳理一遍,这样在考试的时候就不容易弄混了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询