2个回答
2018-08-31
展开全部
敢问这是那个阶段的
更多追问追答
追问
高中
追答
文科理科?
2018-08-31
展开全部
∫(4-4x)/[x(x^2+2)^2] dx let (4-4x)/[x(x^2+2)^2]≡ A/x + (Bx+C)/(x^2+2) + (Dx+E)/(x^2+2)^2 => 4-4x≡ A(x^2-2)^2 + (Bx+C)x(x^2+2) + (Dx+E)x x=0, =>A=1 coef. of x^4: A+B=0 =>B=-1 coef. of x^3, =>C=0 coef of x^2 -4A+B+D =0 -4-1+D=0 D=5 coef. of x 2C+E =-4 E=-4 (4-4x)/[x(x^2+2)^2]≡ 1/x - x/(x^2+2) + (5x-4)/(x^2+2)^2 ∫(4-4x)/[x(x^2+2)^2] dx =∫[ 1/x - x/(x^2+2) + (5x-4)/(x^2+2)^2 ] dx =ln|x| - (1/2)ln|x^2+2| + ∫(5x-4)/(x^2+2)^2 ] dx =ln|x| - (1/2)ln|x^2+2| - (5/2)[1/(x^2+2)] -4 ∫dx/(x^2+2)^2 =ln|x| - (1/2)ln|x^2+2| - (5/2)[1/(x^2+2)] -(√2/2)[ arctan(x/√2) + √2x/(x^2+2) ] +C' / let x=√2tanu dx=√2tanu dx=√2(secu)^2 du ∫dx/(x^2+2)^2 =∫√2(secu)^2 du/[ 4(secu)^4] =(√2/4) ∫(cosu)^2 du =(√2/8) ∫(1+cos2u) du =(√2/8)[u+(1/2)sin2u] +C' =(√2/8)[ arctan(x/√2) + √2x/(x^2+2) ] +C'
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询