展开全部
如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法 提示一种思路:连接并延长FG交AD的延长线于K)
1.连接并延长FG交AD的延长线于K∠KGD=∠FGC ∠GDK=∠GCF BG=CG △CGF≌△DGK GF=GKAB=4 BF=3 AF=5 AB=4+1=5 AB=AF AG=AG △AGF≌△AGK ∠1=∠2
2.延长AC交BC延长线与E∠ADG=∠ECG ∠AGD=∠EGC DG=GC △ADG≌△EGF ∠1=∠E AD=CEAF=5 EF=1+4=5 ∠2=∠E 所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF 求证∠1=∠2
答案:证三角形BFE 全等 三角形DEF。 因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。 所以三角形BFE 全等 三角形DEF。 所以∠1等于∠2(全等三角形对应角相等)
http://wenwen.soso.com/z/q202717453.htm?ri=1002&rq=206610301&uid=0&pid=w.xg.yjj&ch=w.xg.llyjj
就给这么多吧~~N累~!!
1.连接并延长FG交AD的延长线于K∠KGD=∠FGC ∠GDK=∠GCF BG=CG △CGF≌△DGK GF=GKAB=4 BF=3 AF=5 AB=4+1=5 AB=AF AG=AG △AGF≌△AGK ∠1=∠2
2.延长AC交BC延长线与E∠ADG=∠ECG ∠AGD=∠EGC DG=GC △ADG≌△EGF ∠1=∠E AD=CEAF=5 EF=1+4=5 ∠2=∠E 所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF 求证∠1=∠2
答案:证三角形BFE 全等 三角形DEF。 因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。 所以三角形BFE 全等 三角形DEF。 所以∠1等于∠2(全等三角形对应角相等)
http://wenwen.soso.com/z/q202717453.htm?ri=1002&rq=206610301&uid=0&pid=w.xg.yjj&ch=w.xg.llyjj
就给这么多吧~~N累~!!
参考资料: http://wenwen.soso.com/z/q202717453.htm?ri=1002&rq=206610301&uid=0&pid=w.xg.yjj&ch=w.xg.llyjj
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询