求∫e^x*sinxdx
3个回答
展开全部
∫e^x*sinxdx
=e^sinx-∫e^cosxdx
=e^xsinx-(e^xcosx+∫e^xsindx)
=e^x (sinx-cosx)-∫e^xsinxdx
所以2∫e^xsinxdx=e^x(sinx-cosx)+C1
∫e^xsinxdx=e^x(sinx-cosx)/2+C
=e^sinx-∫e^cosxdx
=e^xsinx-(e^xcosx+∫e^xsindx)
=e^x (sinx-cosx)-∫e^xsinxdx
所以2∫e^xsinxdx=e^x(sinx-cosx)+C1
∫e^xsinxdx=e^x(sinx-cosx)/2+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用分部积分 ∫e^x*sinxdx= e^x *sinx-∫e^x*cosx dx=e^x sinx-e^x*cosx-∫e^x*sinxdx
所以∫e^x*sinxdx=1/2*(sinx-cosx)*e^x
所以∫e^x*sinxdx=1/2*(sinx-cosx)*e^x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询