求数列an=n^2(2^n)(n∈N*)前n项和
∵an=n^2(2^n)∴a(n+1)=(n+1)^2(2^(n+1)),
∴a(n+1)/2-an=(n^2+2n+1)(2^n)-n^2(2^n)=(2n+1)(2^n)
令b(n+1)=a(n+1)/2-an,则b(n+1)=(2n+1)(2^n),bn=(2n-1)*2^(n-1),n>1,
设{bn}的前n项和为Tn,其中,首相为b2=3*2=2+2^2
利用错位相减法:
Tn =3*2+5*2^2+7*2^3+...+(2n-3)*2^(n-2)+(2n-1)*2^(n-1)
2Tn= 3*2^2+5*2^3+...+(2n-5)*2^(n-2)+(2n-3)*2^(n-1)+(2n-1)*2^n
∴Tn-2Tn=(2+2^2)+2*2^2+2*2^3+...+2*2(n-2)+2*2^(n-1)-(2n-1)*2^n
∴-Tn=2+2^2+2^3+2^4+...+2^(n-1)+2^n-(2n-1)*2^n
=2*(2^n-1)-(2n-1)*2^n
=-(2n-3)*2^n-2
Tn=(2n-3)*2^n+2,(n>1),T(n+1)=(2n-1)*2^(n+1)+2,(n>0)
∵b(n+1)=a(n+1)/2-an,(n>0),a1=2
∴T(n+1)=(S(n+1)-a1)/2-Sn=[Sn+a(n+1)-a1]/2-Sn=[a(n+1)-Sn-2]/2,(n>0)
∴Sn=a(n+1)-2T(n+1)-2=(n^2+2n+1)*(2^(n+1))-2(2n-1)*2^(n+1)-4-2
=(n^2-2n+3)*(2^(n+1))-6
即 Sn=(n^2-2n+3)*(2^(n+1))-6
那么2Sn=1²*2^2+2²*2^3+……+(n-1)²*2^n+n²*2^(n+1)
两式相减,得:-Sn=2+(2²-1²)*2^2+(3²-2²)*2^3+……+[n²-(n-1)²]*2^n-n²*2^(n+1)
=2+3×2^2+5×2^3+……+(2n-1)×2^n-n²*2^(n+1)
令T=3×2^2+5×2^3+……+(2n-1)×2^n
那么2T=3×2^3+5×2^4+……+(2n-3)×2^n+(2n-1)×2^(n+1)
两式相减,得:-T=3×2^2+2×2^3+……+2×2^n-(2n-1)×2^(n+1)
=12+2^4+2^5+……+2^(n+1)-(2n-1)×2^(n+1)
=12+2^4×[1-2^(n-2)]/(1-2)-(2n-1)×2^(n+1)
=12-16+2^(n+2)-(2n-1)×2^(n+1)
=-4-(2n-3)×2^(n+1)
那么T=4+(2n-3)×2^(n+1)
所以-Sn=2+4+(2n-3)×2^(n+1)-n²*2^(n+1)
=6-(n²-2n+3)×2^(n+1)
那么Sn=(n²-2n+3)×2^(n+1)-6