求解数字电路题 谢谢
展开全部
证明:
1:证:欲证4是f(x)的一个周期,等价于对所有的x∈R有f(x)=f(x+4)
∵f(x)=-f(x+2)
∴f(x+2)=-f(x+4)
∴f(x)=f(x=4)
得证。
变式:同理,∵对所有的x∈R,f(x+2)=-1/f(x),
∴对所有的x∈R,f(x)≠0
∴f(x+4)=-1/f(x+2)=f(x)
得证。
2:证:∵f(x)是偶函数,所以有f(x)=f(-x)
又f(x)以2为周期,所以有f(x)=f(x-2)
∴f(3.5)=f(3.5-2)=f(1.5)=f(1.5-2)
=f(-0.5)=f(0.5)=0.52=0.25
4.
原式=lim(x->+**)1/x/1/x=1
5.
原式=lim(x->1)(1-x)/cosπx/2=lim(x->1)-1/-π/2*sinπx/2=2/π
6.
原式=lim(x->0+)(1/x-1/x)=0
7.
原式=lim(x->0+)e^tanx*ln1/x=e^lim(x->0+)(-tanx*lnx)=e^0=1
8.
原式=lim(x->0)e^2/x*ln(1-sinx)=lim(x->0)e^(-2sinx)/x=e^(-2)
1:证:欲证4是f(x)的一个周期,等价于对所有的x∈R有f(x)=f(x+4)
∵f(x)=-f(x+2)
∴f(x+2)=-f(x+4)
∴f(x)=f(x=4)
得证。
变式:同理,∵对所有的x∈R,f(x+2)=-1/f(x),
∴对所有的x∈R,f(x)≠0
∴f(x+4)=-1/f(x+2)=f(x)
得证。
2:证:∵f(x)是偶函数,所以有f(x)=f(-x)
又f(x)以2为周期,所以有f(x)=f(x-2)
∴f(3.5)=f(3.5-2)=f(1.5)=f(1.5-2)
=f(-0.5)=f(0.5)=0.52=0.25
4.
原式=lim(x->+**)1/x/1/x=1
5.
原式=lim(x->1)(1-x)/cosπx/2=lim(x->1)-1/-π/2*sinπx/2=2/π
6.
原式=lim(x->0+)(1/x-1/x)=0
7.
原式=lim(x->0+)e^tanx*ln1/x=e^lim(x->0+)(-tanx*lnx)=e^0=1
8.
原式=lim(x->0)e^2/x*ln(1-sinx)=lim(x->0)e^(-2sinx)/x=e^(-2)
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询