2个回答
展开全部
因为|yn-A|小于任意给点的任意小的正数ε,是在n无限增大的前提下才是成立的,所以{yn}的前有限项是不可能满足|yn-A|<ε的,但因为n在无限增大,所以一定会找到正整数N,除去前N项,从第N+1项开始,|yn-A|<ε是恒成立的。很明显的,这里的正整数N是与ε有关的。
数列{yn}是否以常数A为极限的关键是,对于任意小的正数ε,是否都能“找到”正整数N,使得n>N时,|yn-A|<ε恒成立。
N的确定才是关键的。
数列{yn}是否以常数A为极限的关键是,对于任意小的正数ε,是否都能“找到”正整数N,使得n>N时,|yn-A|<ε恒成立。
N的确定才是关键的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询