展开全部
f(x)= x-∫(0->π) f(x)cosx dx (1)
两边求导
f'(x) = 1
f(x) = x+C
from (1)
f(x)
= x-∫(0->π) (x+C) cosx dx
= x- C[sinx]|(0->π) -∫(0->π) xcosx dx
= x - ∫(0->π) xdsinx
=x - [xsinx]|(0->π) + ∫(0->π) sinx dx
=x - [cosx]|(0->π)
=x +2
ie
f(x) = x +2
两边求导
f'(x) = 1
f(x) = x+C
from (1)
f(x)
= x-∫(0->π) (x+C) cosx dx
= x- C[sinx]|(0->π) -∫(0->π) xcosx dx
= x - ∫(0->π) xdsinx
=x - [xsinx]|(0->π) + ∫(0->π) sinx dx
=x - [cosx]|(0->π)
=x +2
ie
f(x) = x +2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询